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SUMMARY

Neurons are often considered specialized functional units that encode a single variable. However, many neu-
rons are observed to respond to a mix of disparate sensory, cognitive, and behavioral variables. For such
representations, information is distributed across multiple neurons. Here we find this distributed code in
the dentate gyrus and CA1 subregions of the hippocampus. Using calcium imaging in freely moving mice,
we decoded an animal’s position, direction of motion, and speed from the activity of hundreds of cells.
The response properties of individual neurons were only partially predictive of their importance for encoding
position. Non-place cells encoded position and contributed to position encoding when combined with other
cells. Indeed, disrupting the correlations between neural activities decreased decoding performance, mostly
in CA1. Our analysis indicates that population methods rather than classical analyses based on single-cell
response properties may more accurately characterize the neural code in the hippocampus.

INTRODUCTION

The hippocampus has been studied extensively in experiments

regarding navigation and spatial memory. The responses of

some of its cells are easily interpretable because these tend to

fire only when the animal is at one location in an environment

(place cells). However, it is becoming clear that, in many brain

areas, which include the hippocampus and entorhinal cortex,

the neural responses are very diverse (Rigotti et al., 2013; Ei-

chenbaum, 2018; Fusi et al., 2016; Hardcastle et al., 2017) and

highly variable in time (Fenton and Muller, 1998; Ziv et al.,

2013; van Dijk and Fenton, 2018). Place cells might respond at

single or multiple locations in an orderly (grid cells) or disorderly

way, and multiple passes through the same location typically

elicit different responses. Part of the diversity can be explained

by assuming that each neuron responds non-linearly to multiple

variables (mixed selectivity) (Rigotti et al., 2013; Kriegeskorte

and Douglas, 2019; Saxena and Cunningham, 2019). Some of

these variables may not be monitored in the experiment and,

hence, contribute to what might appear as noise. A neural

code based on mixed selectivity is highly distributed because

some variables can be reliably decoded only by reading out

the activity of a population of neurons. It has been shown

recently that the mixed selectivity component of the neuronal re-

sponses is important in complex cognitive tasks (Rigotti et al.,

2013; Fusi et al., 2016) because it is a signature of the high

dimensionality of the neural representations. Place cell dis-

charges are also highly variable (Fenton and Muller, 1998) to

the extent that the variability, not the spatial tuning alone, can

capture changes because of learning in a spatial memory task

(Olypher et al., 2003; Kelemen and Fenton, 2010; van Dijk and

Fenton, 2018). These recent studies naturally pose the question

Neuron 107, 1–14, August 19, 2020 ª 2020 Elsevier Inc. 1

ll

Please cite this article in press as: Stefanini et al., A Distributed Neural Code in the Dentate Gyrus and in CA1, Neuron (2020), https://doi.org/10.1016/
j.neuron.2020.05.022



of how position is encoded within the population activity in the

hippocampus. To answer this question, we used calcium imag-

ing to record the activity of large populations of neurons in the

dentate gyrus (DG), a region of the hippocampus in which the

neural responses are highly sparse and diverse (Leutgeb et al.,

2007; Danielson et al., 2016; van Dijk and Fenton, 2018), and in

CA1, a region that has been studied extensively in relation to

spatial navigation using electrophysiology (Moser et al., 2008;

Harvey et al., 2009; Keinath et al., 2014; Agarwal et al., 2014)

and imaging (Dombeck et al., 2010; Ziv et al., 2013).

We show that the position of a mouse freely exploring an envi-

ronment can be decoded from the activity of a few tens of

granule cells (GCs) of the DG with an accuracy comparable

with that of CA1. Using machine learning techniques, we ranked

neurons by their contribution to position encoding.We found that

trial-averaged, single-neuron tuning properties are insufficient to

predict a neuron’s contribution to position encoding at the pop-

ulation level. Cells that were not spatially tuned according to a

statistical test based on spatial information (non-place cells)

also contributed to the population code, to the extent that posi-

tion could be decoded from the ensemble of these untuned cells

alone in both areas. We further found that neurons in the DG and

CA1 reliably encoded other variables, such as the direction and

speed of movement. These neurons were not distinct from the

neurons that encoded position; i.e., the majority of neurons en-

coded multiple variables and contributed to all of them. We

then found that destroying correlated activities among neurons

while maintaining their spatial tuning had an effect on decoding

performance in CA1 but not in the DG. Taken together, these re-

sults show that the information encoded at the population level is

far richer than at the single-cell level and allowed us to uncover

the strong robustness of DG and CA1 spatial coding through

the distributed nature of their neural representation.

RESULTS

We studied the neural code in the DG and in the CA1 area of the

hippocampus of freely moving mice. We used miniaturized

head-mounted microscopes to perform calcium imaging of

GCs in the DG and of pyramidal cells in CA1. To image cell activ-

ity patterns, we injected a virus encoding the calcium indicator

GCaMP6 and implanted a gradient index (GRIN) lens for chronic

imaging (Figure 1A–1C). Four weeks after surgery, we imaged

cellular activity while mice foraged for sucrose pellets in an

open field arena. We then used a recently developed algorithm

for reliably extracting the GCaMP signals from the raw videos,

CNMF-E (Zhou et al., 2018; Figures 1D–1G). This algorithm sep-

arates local background signals resulting from changes in fluo-

rescence in the neuropil from signals resulting from calcium con-

centration changes in individual cells. This was necessary to

identify signal sources in our GC imaging data without intro-

ducing spurious distortions or correlations among cells because

of artifacts. We identified a total of 1,109 DG cells across 3 ani-

mals, of which 352 (32%) were significantly tuned to position,

A D E

GFB C

Figure 1. Calcium Image Recordings

(A) Experiment protocol. Mice were anesthetized with isoflurane and placed in a stereotactic apparatus. DGmice were then injected in the dorsal DG with a virus

encoding GCaMP6m. CA1 mice were injected with GCaMP6f. Mice were then implanted with a GRIN lens, and a baseplate was attached to the skull at the

optimal imaging places. Three weeks after surgery, they were checked for GCaMP expression with a miniaturized microscope (Inscopix, Palo Alto, CA) and

procedures described previously (Resendez et al., 2016). The imaging plane was later assessed through histology (Figure S22).

(B) DG recording site. GCL, GC layer; SGZ, subgranular zone.

(C) CA1 recording site. Pyr: pyramidal layer; Or, stratum oriens; Rad, stratum radiatum.

(D–G) Automated signal extraction using CNMF-E (Zhou et al., 2018). The algorithm identifies the spatial (D, F) and temporal (E, G) components of the signal sources;

i.e., putative cells. It uses a generativemodel of calcium traces and non-negativematrix factorization to separate actual signal sources from the background because

of diffused neuropil fluorescence. The extracted spatial components are displayed in (D) (DG) and (F) (CA1), where a few representative ones are highlighted. The

corresponding signals are shown in (E) (DG) and (G) (CA1), where vertical ticks correspond to the times of the inferred calcium events and gray lines to the temporal

profiles (Figure S1). In line with electrophysiology studies, DG GCs are sparsely active but often in bursts (Pernı́a-Andrade and Jonas, 2014).

Scale bars, 1 min and 1 SD.
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and a total of 863 CA1 cells across 3 animals, of which 38 (4%)

were significantly tuned to position (STAR Methods; Figure S2).

The low fraction of place cells in CA1 seems to be in contrast

with reports from previous studies in CA1 (Meshulam et al., 2017;

Pfeiffer and Foster, 2013; Talbot et al., 2018; Ziv et al., 2013).

However, modern tools for source extraction from calcium imag-

ing can detect cells with very low activity, which are largely

underestimated in electrophysiological recordings, as other

recent studies have also suggested (Dipoppa et al., 2018; Tang

et al., 2018). If one excludes these low firing rate cells from the

analysis, the fraction of place cells becomes significantly higher

(Figure S3; Table S1). Moreover, although calcium signal extrac-

tion may miss isolated spikes, this is likely less of an issue for DG

GCs than pyramidal cells because the former are often active in

burst, as electrophysiology studies have shown (Pernı́a-Andrade

and Jonas, 2014) and as our data also show (Figure 1E). See Fig-

ure S3 and Table S1 for a brief review of the literature comparing

firing rates in the DG and CA1 across studies.

The first step of our analysis was to assess whether the posi-

tion of the animal is encoded in the recorded neural activity

during mobility. We therefore removed all time bins in which

the animal was slower than 2 cm/s for a period longer than 1 s

after confirming by visual inspection that this procedure would

exclude moments of immobility. To decode position, we discre-

tized the x and y coordinates of the animal by dividing the arena

into 64 regions (83 8 grid) (50-cm square arena for DGmice and

50 3 28 cm for CA1 mice). We then trained a battery of linear

classifiers for each pair of discrete locations. Each session was

divided into 10 1-min-long intervals, 9 of which were used to train

the classifiers and the remaining ones to test them (10-fold cross

validation). We used a majority rule (Bishop, 2006) to combine

the outputs of the linear classifiers as an instantaneous estimate

of the animal’s location, using the center of the selected location

as the decoded position.

In both areas, themedian decoding error was comparable with

the animal size, revealing for the first time that instantaneous po-

sition can be decoded from DGGC population activity (Figure 2).

Our analysis of the CA1 data shows a comparable decoding ac-

curacy in the DG and CA1 after correcting for the number of cells

(Figure 2C; Figure S4). The accuracy was slightly higher than the

one observed in previous studies in CA1 (Ziv et al., 2013).

Different decoding strategies, such as decoding from raw cal-

cium traces or events, produced similar results (Figure S6). The

decoding error was found to weakly correlate to the speed of

movement (Figure S7). To our knowledge, this is the first time

that decoding of position from populations of DG cells has

been reported.

We could also decode the direction of motion of the animal in

both regions and its speed only in the DG. Speed was weakly

correlated with the overall level of activity in the DG, and we

could decode it in two animals of three using linear regression

(Figures 2B and 2C). To decode the direction of motion, we

divided the full range of possible directions into 8 angular bins

and labeled time bins according to the instantaneous discrete di-

rection of motion of the mouse (STAR Methods). To our knowl-

edge, this is also the first time that decoding of direction and

speed of motion from populations of the DG and CA1 cells has

been reported, although direction tuning has been observed pre-

viously in CA1 pyramidal cells in rats (Acharya et al., 2016). We

did not find differences in decoding performance for direction

of motion between the DG and CA1 areas (Figure 2C).

To better characterize the neural code, we tried to determine

which features of the response properties of individual neurons

are important for encoding the variables we could decode. It is

important to realize that these response properties could be

dissociated from the contribution of a cell to the accuracy of a

decoder that reads out a population of neurons. For example,

there could be neurons that are only weakly selective to position

and individually would not pass a statistical test for spatial tun-

ing. However, when combined with other neurons, they can still

contribute to position encoding. Alternatively, there are situa-

tions where the decoder might assign a large weight to neurons

that are weakly selective or even not selective at all, but they are

correlated to selective neurons. This situation can be illustrated

with the intentionally extreme case shown in Figure 3, where

we show how the responses of individual neurons can be disso-

ciated from their importance for the decoder. A simulated animal

visits two locations of the arenamultiple times. The activity of two

hypothetical neurons is represented in the activity space (Fig-

ure 3B), with the horizontal and vertical axes representing the ac-

tivity of the first and the second neuron, respectively. At each

pass through each location, the two neurons have different activ-

ity because of other variables that might also be encoded; e.g.,

the direction of movement, the speed of the animal, or other vari-

ables that are not under control in the experiment. Each point in

the activity plot represents the activity of the neurons in a single

pass. The responses of neuron 2 to the two different locations

have the same distribution (Figures 3B). A cell with such

response properties is untuned to space (a non-place cell),

and, therefore, it is typically considered unimportant for encod-

ing position. However, a linear decoder trained to decode the po-

sition of the animal canmake use of the untuned neuron because

of the correlations between the activities of the two neurons.

Although the activity of neuron 1 is only partially predictive of

the animal’s location (the distributions partially overlap), by

reading out neuron 2 together with neuron 1, it is possible to

decode position with no errors using a linear decoder. In such

a situation, the linear decoder would assign equal weights to

the two neurons, as shown in Figure 3B.

In the real data, theremight be a spectrumof different situations

that are less extreme than the one illustrated in Figure 3, in which a

decoder can take advantage of weakly tuned cells. Cells like the

untuned one shown in Figure 3 or weakly tuned cells can ‘‘coop-

erate’’ with more tuned cells to more precisely encode a variable

like position. This is a situation similar to the one shown in Figure 3,

where the correlations between the activities of different neurons

would be important. However, there might also be weakly tuned

cells that are uncorrelated but, when combined, would contribute

to the accuracy of a decoder. In both cases, the decoder can use

the weakly tuned cells to improve its accuracy. Analogously, a

downstream neuron can, in principle, harness the activity of

weakly tuned neurons to read out the animal’s position.

In our analysis, we took the perspective of such a readout

neuron and analyzed the weights assigned to cells by our

decoder to determine the importance of input neurons in a pop-

ulation for encoding position. The procedure we adopted was to
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first train the position decoder on each pair of locations and then

to combine the resulting weights to obtain a single importance

index (u) for each cell (STAR Methods). Similar methods are

used to assess the importance of individual features in a feature

space (Haufe et al., 2014; Mladeni�c et al., 2004) and have been

used recently to identify important synapses in learning models

(Zenke et al., 2017). We then ranked the neurons according to

this importance index and estimated the decoding accuracy

for populations of 50 neurons (Figures 4A and S17) to assess

the validity of our approach. The 50 neurons with the largest

importance index indeed performed significantly better than

the worst 50 neurons, although position could be decoded

above chance level even from the worst neurons. The accuracy

decreases progressively between the performance for the best

and for the worst neurons, validating the method for ranking

the neurons on the basis of the importance index. We also

controlled that the ranking was stable within the session (Fig-

ure S8) and that it was not due to poor cell segmentation

(Figure S24).

The observation that most neurons could contribute to decod-

ing of position indicates that the neural code is highly distributed.

Indeed, the importance index is rather similar for most of the

cells. To quantify the distribution of importance across cells,

we used the Gini coefficient, a quantity that is often used to

represent wealth inequality in a country. A high Gini coefficient

indicates high inequality, as in a dedicated code where few neu-

rons strongly encode a given variable, whereas low values corre-

spond to an equal distribution of resources, as in a distributed

code. We observed low values in the DG and CA1, indicating

that different neurons tend to contribute equally to the encoding

of position, a signature of a distributed code rather than a situa-

tion where only a few cells are important (Figure S13).

Not too surprisingly, one important feature of an individual

neuron is its average activity, which is strongly correlated with

A C

B

Figure 2. Decoding Position, Speed, and Direction of Motion

(A and B) Decoding results for a representative DG mouse. See also Videos S1 and S2.

(A) Selected frames of a video showing the arena and a DG animal from above. The black filled dot represents the mouse’s actual position, and the black circle

with the dot in the center is the decoded position, obtained with a probabilistic decoder that reads the activity of 317 DG cells (STARMethods). Neural activity was

pre-processed to identify putative calcium events, as explained in STAR Methods.

(B) Examples of decoding position, speed, and direction of motion (DG-representative mouse). Grey lines correspond to the real values of position and speed

variables in the top left and bottom left panels, respectively, whereas the red dots correspond to their decoded values. The time bins marked in light red for

position and direction ofmovement correspond tomoments of immobility that were excluded from the training data. The gray line in the right panel corresponds to

the position of the mouse, and the red arrows correspond to the decoded direction of motion in a 30-s time window.

(C) Decoding accuracy (top, DG; bottom, CA1). The decoding error for position and head direction is computed as the median of the distances computed

between the decoded value in each time bin and the actual value of the decoded variable in the test data. For the direction of motion, the smallest angle between

the decoded and the actual value is considered. The black and red vertical bars correspond to the mean over the 10-fold cross-validation (error bars correspond

to SD). Gray, chance error obtained by decoding from shuffled data in a way that preserves the autocorrelations in the data (*p<0.05, **p<0.01, ***p<0.001, STAR

Methods; Figure S5).

Number of cells: 483, 309, and 317 in DG mice; 371, 286, and 206 in CA1 mice.

See also Figures S4–S7 and S12.
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the importance index and, hence, to the overall ability to encode

position (Figures 5A and 5B; Figures S9 and S19). However, in-

spection of the firing fields of Figure 4B indicated that there

were no other obvious properties that predicted whether a

neuron is important in the DG and CA1 neuron populations.

We then identified which neurons were spatially tuned and called

them place cells when the spatial information contained in their

activity was statistically significant (see STAR Methods for de-

tails). The difference between the spatial information for the re-

corded activity and the spatial information obtained for shuffled

data, properly normalized, is what we defined as significance of

spatial information (SSI). It is indeed a measure used to assess

whether a cell is a place cell relative to a null distribution (Allegra

et al., 2019; Danielson et al., 2017; Meshulam et al., 2017; Pan-

zeri et al., 2007; Skaggs et al., 1992).

From Figure 4B, it is clear that, in our data, there are non-place

cells that have a large importance index. The animal’s position

could be decoded from these cells alone in the DG and CA1 (Fig-

ures 4C and S17. This indicates that the activity of the non-place

cells contains some spatial information. However, because of

noise and limited data, the activity of these cells did not pass

the statistical test we adopted to characterize place cells.

Although the SSI is a property of a single cell, the importance

index depends on the contribution of a cell to the population

code. We thus analyzed the relation between each cell’s SSI

and its importance index. Although we did not find a one-to-

one correspondence between SSI and importance index, the

two quantities were correlated (Figures 5A–5C; Figure S19), indi-

cating that some individual response properties are at least

partially informative about the importance of a cell in encoding

position. To compute the SSI, one has to compute the spatial in-

formation and subtract a baseline obtained by shuffling the activ-

ity. The spatial information without the baseline subtraction,

which is sometimes used as a measure of the tuning of the cells,

was actually negatively correlated with the importance index

(Figure S9A; Kelemen and Fenton, 2010). However, the baseline

was also negatively correlated with the importance index (Fig-

ure S9B). The net effect is that the correlations between SSI

and importance index were positive. The negative correlations

are a reflection of the sampling bias problem that affects cells

with low activity (Panzeri et al., 2007). Low-activity cells tend to

be more selective because the fluctuations of the activity are

relatively large. However, these cells are typically unreliable

(e.g., they fire at a particular location only during one pass);

hence, their importance index is low.

We performed a similar analysis of importance for the direction

of movement. In Figure 6 (see also Figure S18), we show that we

could rank the cells according to their contribution to decoding

(Figure 6A; Figure S18) and that the important cells were highly

heterogeneous in their direction tuning (Figure 6B). Considering

all recorded cells, we also found that a cell’s activity correlated

with the importance index for direction of movement in the DG

and in CA1 (Figure 6C). We defined the significance of directional

information (SDI) in a similar way as the SSI by comparing the

mutual information between direction of motion and a cell’s ac-

tivity to a distribution obtained by shuffling the cell’s calcium

events in time. The importance index and this directional infor-

mation were correlated in the DG and CA1 (Figure 6D;

Figure S20).

All of these analyses indicate that single-neuron properties are

only partially predictive of the importance of a cell for decoding.

Moreover, the importance is not an intrinsic property of an

A B

Figure 3. The Contribution of Untuned Cells for Encoding Position

We show an extreme situation where one simulated neuron has the same activity distribution when the animal is in two different locations of the arena. Hence, the

neuron is not selective to position. Nevertheless, for a decoder, this neuron can be as important as other selective neurons because of its contribution to the

population coding.

(A) Activity of two simulated neurons as a function of time. Top: the simulated animal visits the same discrete location twice (location A in green, location B in red).

Bottom: simulated traces around the time of pass through each location. Different responses for the two neurons are elicited by different experiences; for

example, because of the different direction of motion.

(B) Example of how place cells and non place-cells can be equally important for encoding the position of the animal. In the scatterplot, the x axis represents the

average activity of the first neuron during one pass, and the y axis represents the activity of the second neuron. Each point in the space represents an average

population response in a single pass. Their responses are typically highly variable and scattered around their mean values. The two neurons in the example have

very different activity profiles; the first has a strong spatial tuning (place cell), whereas the second has only a weak tuning. The distributions of their activities in

each location, reported along the axis, overlap only partially (neuron 1, place cells) or almost completely (neuron 2). Despite this variability in the single neuron

responses, the neural representations at the population level are well separated, making it possible for a linear decoder (blue dashed line) to discriminate them

with high accuracy. The resulting decoder’s weight vector has two equal components corresponding to the importance of the two neurons in encoding position. In

this example, both neurons are important for encoding position despite their very different tuning properties.
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individual cell because it clearly changes depending on which

other cells are part of the population of neurons that are used

by the decoder. This is illustrated in Figure 3, where the untuned

cell is important when combined with the cell represented on the

horizontal axis, but it would be useless when combined with

another untuned cell or with an uncorrelated tuned cell.

Because we could decode at least two variables from the neu-

ral activities, we wondered whether we could identify some form

of specialization where segregated groups of neurons encoded

different variables. In Figure 7, we report the importance index

for the direction of movement versus the importance index for

position (Figure 7A; Figure S21). The situation where different

variables would be encoded by segregated populations of neu-

rons would predict a negative correlation between these two

importance indices: cells with a large importance index for posi-

tion should have a small importance for the direction of move-

ment and vice versa. Instead, for both regions we analyzed, we

found a positive correlation between the two quantities, with a

higher correlation in CA1, suggesting that neurons that are

important for encoding one variable are also important for en-

coding the other. This is partially explained by the fact that, for

position and direction of movement, the most active cells tend

to be the most important ones. However, when we regressed

out the components explained by the activity, we still found a

positive correlation between the importance indices of the two

variables (Figure 7A). In addition, this could not be explained

A C

B

Figure 4. Ranking Neurons According to Their Contribution to the Decoding Accuracy for Position

(A) Validation of the importance index. We show the median error for various selections of 50 DG cells from a representative animal ranked by their importance

index as obtained using the decoder’s weight. Each point in the plot is aligned to the rank of the first cell in the selection (for example, the first dot corresponds to

the selection of the first 50 cells from index 1 to index 50; the shaded region represents the SD for the 10-fold cross-validation). Gray: chance level and SD. As

expected, the median error for the population of the 50 top-ranked (best) cells is much smaller than the median error for the last (worst) 50 ones.

(B) Spatial tuning maps for groups of 18 cells ordered by importance index (the same cells as in A). We ranked the cells using the importance index for position

(STARMethods). The three groups of best, mid, and worst cells are highlighted with the color bands in (A) for reference. Themaps are normalized to the peak rate

in eachmap. Dashed red borders indicate cells that do not pass the criteria for place cells using a commonly used statistical test for tuning (STARMethods). Even

among themost important cells, there appear some non-place cells (and vice versa). Similarly, some place cells appear in the group of cells withmedium and low

importance. The small fields in the group of low-importance cells are due to significantly lower activities (Figure 5).

(C) The position of DG and CA1 animals can be decoded from the activity of the non-place cells with a performance significantly higher than chance (vertical bars

correspond to mean and SD, ***p<0.001, STAR Methods).

Number of cells: 451, 208, and 98 in DG mice; 350, 277, and 198 in CA1 mice.

See also Figures S2, S3, S8, S10, and S24 and Table S1.
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by a correlation between direction of movement and position

(Figure S11).

We then focused on cells that had a high importance for one

variable but not for the other as candidate specialized cells.

However, we could decode position from the most important

cells for encoding direction of motion and vice versa, showing

that even the most important cells for one variable carry informa-

tion about the other variable in both regions (Figure 7B). We

conclude that, in CA1 and the DG, neurons have mixed selec-

tivity to the variables we decoded, in line with recent studies in

CA1 (Meshulam et al., 2017) and in the cortex (Rigotti et al.,

2013; Fusi et al., 2016; Hardcastle et al., 2017; Lindsay et al.,

2017; Discussion).

So far, we have shown that the code that is used to represent

position is distributed; i.e., all active cells contribute to some

extent to the population code. We therefore sought to see

whether correlations between the activities of different neurons

contribute to the decoding performance in a similar way as

what we described in Figure 3. To understand the contribution

of correlations to the encoding of position, it is important to

distinguish different components, and in particular the correla-

tions generated by the signal (i.e., the position of the animal)

and those that can be considered noise (i.e., not related to en-

coding of position). The signal component is induced by the tun-

ing properties of individual neurons. For example, two place cells

that have highly overlapping fields are going to be correlated

because they tend to be co-active when the animal is at a partic-

ular location. Noise correlations represent the component that

cannot be explained by the signal, and they are essentially due

to the fact that every time the animal is at particular location,

the neural response can be different. Noise correlations can be

beneficial, detrimental, or irrelevant for the neural code (Abbott

and Dayan, 1999; Schneidman et al., 2003; Brody, 1999). How-

ever, our initial hypothesis was that a large portion of the noise

variance can be explained by the fact that neurons encode mul-

tiple variables besides position (Discussion). For example, the

different points that encode the same position in Figure 3 might

correspond to visitations where the head direction and/or the

speed were different. In this case, destroying the correlations

would result in a decrease or no change in decoding perfor-

mance (Figure 8A).

We devised a procedure to shuffle the data in a way that de-

stroys the noise correlations across neurons maintaining the

spatial tuning of each cell (STAR Methods; Figure S14). We

then studied the effect of this procedure on the decoding accu-

racy for position. At each pass through a location, we randomly

picked the activity of a cell from the pool of recordings corre-

sponding to that location and that cell (Figure 8B). We then

corrected for the different time spent in each pass at the same

location and repeated the procedure for all cells independently.

A B

C

Figure 5. Correlation between Importance Index and Spatial Information

(A and B) Left: scatterplot of the importance index and overall cell activity for each cell in one representative animal. As expected, we found a strong correlation

between these quantities because it is unlikely that a weakly active cell can contribute to decoding. Right: scatterplot of the importance index and statistical SSI

with respect to independent random temporal shuffling of each cell’s identified calcium events. DG cells are shown in (A) and CA1 cells in (B). Each dot cor-

responds to one cell in one representative animal. Pearson’s correlation factor r between the plotted quantities are reported (Pearson’s correlation significance,

***p<0.001). Significant correlations are found between the analyzed quantities, but single-cell statistics only partially capture the information available at the

population level. For each quantity, overall histograms are reported on the side of the plot. The dashed red line corresponds to a value of a threshold of 3 used to

define place cells (STAR Methods).

(C) The same plots as in (A) and (B) but for all cells identified in all fields of view (FOVs) in DG (left) and CA1 (right) (Pearson’s correlation significance, ***p<0.001).

See also Figures S9 and S13.
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By using this procedure, we effectively destroyed the noise cor-

relations between neurons because, after this manipulation,

each cell’s activity was independent from the others. However,

by restricting the manipulation to each discrete location, we

did not alter the spatial tuning of the cells (Figure 8C) or the signal

correlations among neurons induced by their tuning profiles. By

comparing the performance of the decoder on the modified data

with the one on the original data, we could then assess the

contribution of the noise correlations to decoding. This is a direct

test of the presence of a structure in the neural representations

that is beneficial for representing information (Abbott and Dayan,

1999; Averbeck and Lee, 2006; Pillow et al., 2008; Eyherabide

and Samengo, 2013). In 4 of the 6 analyzed animals, we found

that the decoding error increased when correlations were de-

stroyed through the shuffling procedure, revealing the impor-

tance of correlations (Figure 8D). The effect was very consistent

in CA1 neurons, where performancewas reduced by about 20%,

whereas almost no effect was observed in the DG (Figure S14).

Pairwise correlations were found to be lower in the DG than in

CA1 (Figure S16), and this may partially explain the main effect

that disrupting correlations can lead to different changes in de-

coding accuracy in the two areas. However, it might only partially

explain the effect because the correlations are not completely

absent in the DG, and those we observed certainly changed after

disrupting the noise correlations (for an analysis of how destroy-

ing correlations affects pairwise correlations and the importance

index, see Figures S16 and S23).

DISCUSSION

Neurons in the DG and CA1 have rather diverse response prop-

erties, and often the responses are not easily interpretable (Dan-

ielson et al., 2016; Leutgeb et al., 2007). Despite this seemingly

disorganized neural code, it is possible to decode, from the ac-

tivity of a population of neurons, the position, speed, and direc-

tion of motion of the animal. Neurons respond to mixtures of the

decoded variables, as observed in other highly cognitive brain

areas (Rigotti et al., 2013; Fusi et al., 2016). The information

A

C

D

B

Figure 6. Ranking Neurons According to Their Contribution to the Decoding Accuracy for Head Direction

(A) Validation of the importance index as in Figure 4A, but we ranked the cells according to the importance index for decoding direction ofmotion (STARMethods).

(B) Tuning maps as in Figure 4B. Here we show the tuning for direction of motion of single cells as polar tuning maps for groups of 18 cells ordered by importance

index. The area color represents the overall activity of the cell throughout the trial. Dashed red borders indicate cells that do not pass the criteria for significant

direction tuning using a commonly used statistical test (STAR Methods). As in the case of position tuning, some untuned cells appear among the most important

cells, and highly tuned cells appear among the least important.

(C) Scatterplots of cell activity and importance for position decoding for all identified cells combined from all FOVs in the DG (left) and CA1 (right). The Pearson

correlation factor r between the plotted quantities is reported (Pearson’s correlation, ***p<0.001).

(D) Same as in (C) but for importance index for direction and significance of direction information.
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about these variables is highly distributed across neurons to the

point where the responses of individual neurons are only weakly

predictive of their contribution to the neural code. It is therefore

crucial to consider neurons in one region of the brain as part of

an ensemble to assess their importance for processing and

transferring information about a particular variable.

One implication of such a distributed neural code is that it can

be misleading to characterize the function of a brain region

based only on the statistics of individual neuron properties. In

the specific case of position encoding, for instance, it is not

possible to conclude to what extent the position of the animal

is encoded only by analyzing the tuning of individual cells to

space. Indeed, populations of cells whose activities do not

pass a selectivity criterion for space encoding (for example,

through an information-theoretical approach), may still encode

position via the ensemble activity patterns, as we showed by de-

coding position and direction of motion from untuned cells in the

DG and CA1 regions of the hippocampus.

The population coding rescues the ability of these areas to

encode position despite the sparsity of its activity and the vari-

ability of its representations. Here we show that, indeed, even a

few tens of cells encode position with high precision in both

analyzed areas. Furthermore, the decoding was accurate even

when the model training and model test periods were separated

by up to 18min, indicating that, at the population level, the repre-

sentations were stable despite the elevated variability of individ-

ual cells (Figure S12).

Our findings are in line with studies suggesting that session-

averaged, single-cell statistics fall short in describing the activities

of hippocampal cells. For example, although place fields are

widelyused toanalyzeDGactivities in remappingstudies (Leutgeb

et al., 2007), it is only when sub-second network discharge corre-

lations are taken into account in the analysis thatmemory discrim-

ination signals can be revealed (van Dijk and Fenton, 2018). More

importantly, we address one important question about the role of

non-place cells in the CA1 and DG areas of the hippocampus. A

recent work by Meshulam et al. (2017) used a maximum entropy

model to describe the neural activity recorded in CA1. The model

is constructed from the second-order statistics (the correlations

between neurons), and it accurately predicts the activity of each

neuron from the state of all other neurons in the network, regard-

less of how well that neuron codes for position. They conclude

that correlation patterns in the CA1 hippocampus only partially

arise fromplace encoding.Moreover, their results suggest that un-

derstanding the neural activity may require not only knowledge of

the external variables modulating it (i.e., the position of the animal)

but also of the internal network state. Our results indicate that the

correlation patterns not due to position encoding can be partially

explained by the encoding of other external variables (e.g., the di-

rection of movement). However, it is likely that some components

of the correlation patterns encode the internal state of the animal,

as suggested by Meshulam et al. (2017). Our analysis also shows

directly that non-place cells contribute to encoding of the position

of the animal. This is partially due to the fact that some of the cells,

A B

Figure 7. The Representations for Space and Direction of Motion Are Distributed in DG Cells and CA1 Cells

(A) Left: scatterplots of importance index for position and direction of motion (top, DG cells in one representative mouse; bottom, CA1 cells). Each dot corre-

sponds to one cell for whichwe computed the importance index for the variables we decoded. Pearson’s correlation values r are reported (Pearson’s correlation,

***p<0.001). Right: same as left, but the component due to the correlation between importance index and cell activity was removed from the data. Residuals from

linear regression are considered for both quantities. The residuals also show a positive correlation.

(B) Even the most important cells for encoding one variable carry information about the other variable. We show the decoding performance of position (left) and

direction of motion (right) using the most important cells for direction and position (left and right plots, respectively). Vertical bars correspond to mean and SD

(*p<0.05, **p<0.01, ***p<0.001, STAR Methods).
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when taken individually, encode position only weakly and, hence,

do not pass the statistical test for being categorized as place cells;

the criterion used byMeshulam et al. (2017) to select place cells is

similar to ours. However, non-place cells contribute toposition en-

coding also because of their correlations with place cells. Indeed,

when the noise correlations are destroyed, the decoding accuracy

decreases in CA1. This is compatible with their observation that

place and non-place cells belong to the same network when the

patterns of correlations are considered, but it also goes beyond

their analysisbecause it showsdirectly that correlationsare impor-

tant for encoding position. In conclusion, to study the neural code

inoneparticular regionof thebrain, onehas toconsiderall cells in a

populationbecause tuningproperties that are basedon single-cell

statistics might not be sufficient to understand how task-relevant

variablesareencoded (Fusi etal., 2016;KriegeskorteandDouglas,

2019; Saxena and Cunningham, 2019).

Poor Spatial Tuning and the Advantages of Mixed
Selectivity
One of the important observations we discussed in the article is

that there is a large proportion of cells that exhibit poor spatial tun-

ing. The computational advantage of poor spatial tuning can be

understood only when one considers a situation where the neu-

rons in a population encode not only the position of the animal

but also several other variables (e.g., head direction, the velocity

of the animal, and other unknown variables that are not under con-

trol in our experiment). This can be implemented in different ways.

For instance, each variable could be encoded by a different group

of highly specialized neurons. However, these representations are

low-dimensional; hence, they greatly limit the number of combina-

tions of input variables to which a linear readout or a downstream

neuron can respond; see, for instance, Fusi et al. (2016). One sim-

ple example is a downstream neuron that must respond when the

animal is looking at the center of the arena from two opposite cor-

ners. Such a simple situation is equivalent to the exclusive-or

(XOR) problem in which the combinations of variables (position

and headdirection) that should activate the neuron (animal looking

at the center of the arena) and those that should not (same posi-

tions, animal looking in the opposite directions) are not linearly

separable. Instead, when head direction and position are mixed

non-linearly, the neural representations can be high-dimensional,

and a linear readout can separate any set of combinations of

A C D

B

Figure 8. Destroying Correlations Affects Decoding Performance in CA1 but Not in the DG

For a Figure360 author presentation of this figure, see https://doi.org/10.1016/j.neuron.2020.05.022.

(A) Procedure to test the presence of correlations between cells. We recorded neural activity during multiple passes through location A (green). Then we gen-

erateed a new recording by randomly choosing one of the activities recorded in that location for each cell independently. The green dot below the decoder’s

discrimination line in the activity plot corresponds to the newly generated activity. We repeated this procedure for all the passes through each location and for

each cell independently, destroying the correlations between cells, if any. In the extreme case depicted in the cartoon, this procedure will introduce errors in

decoding position because the generated activity will be classified as the wrong location.

(B) Cartoon activity traces for the two correlated neurons during the two passes through the same location. As described in (A), we destroyed correlations by

choosing, for each neuron, the activity during one of the passes through that location and combined them to generate a new activity pattern corresponding to that

location. In this example, we chose pass 2 for neuron 1 and pass 1 for neuron 2.

(C) Spatial tuning maps of four representative cells before (left) and after (right) applying the shuffling procedure to destroy correlations. The spatial tuning of the

cells remain unaltered after the procedure.

(D) Decoding performance before (light colors) and after destroying correlations through shuffling (full colors). Top: DG animals. Bottom: CA1 animals. Vertical

bars correspond to mean and SD (*p < 0.05, **p < 0.01, ***p < 0.001, STAR Methods).

See also Figures S14, S15, and S24.
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inputs from the others. This is why, in most problems that involve

at least two variables, mixing all relevant variables non-linearly is

beneficial.Mixing positionwith other variables, like headdirection,

leads to relatively poor spatial tuning, but it also confersmore flex-

ibility to linear readouts, greatly increasing the computational abil-

ity of the network.

In our paper, we also showed that our data support the hy-

pothesis for mixed selectivity, already entertained by previous

research, in the specific case of spatial representations in the

hippocampus. We verified this hypothesis by showing that neu-

rons in the DG and CA1 encode multiple spatial variables, not

only position, through decoding. In such a situation, it is possible,

and very likely, to find that neurons that do not explicitly encode

position; i.e., they do not have significant spatial tuning but are

still important to discriminate between pairs of locations through

correlations imposed by the geometry of the neural representa-

tions. In the cartoon in Figure 3, for instance, we show howmod-

ulation of activity imposed by correlations can be used by a

decoder to perfectly discriminate two locations (see also recent

reviews in Kriegeskorte and Douglas, 2019; Saxena and Cun-

ningham, 2019). That modulation must therefore be intended

as the result of the population response to combinations of vari-

ables that include position, speed, movement direction, and

possibly other variables that were not under our control (Allegra

et al., 2019). We modeled such a situation in Figure S15 and

found regimes in which correlations imposed by other variables

help and situations where they do not have a significant effect on

decoding performance, depending on the geometry of the neural

representations. Taken together, our results show the advan-

tages of a distributed code in that it can reliably represent multi-

ple combinations of variables.

The Encoding Role of Correlations
Destroying correlations among neurons did not have a strong ef-

fect on decoding performance in DG neurons, but it consistently

reduced decoding performance in CA1 data. Whether neural cor-

relations are used in the population code is a long-standing ques-

tion. In the data, it has been shown in the past that the pairwise

correlations only accounted for about 10%of the information con-

tained in neural activities (Averbeck and Lee, 2006; Latham and

Nirenberg, 2005; Schneidman et al., 2006), whereas usingmodels

that exploit higher-order correlations can recover about 20%of in-

formation related to the stimulus in a population of retinal ganglion

cells (Pillow et al., 2008). Here we showed that the disruption of

correlations leads to a relativelymodest but statistically significant

decrease in decoding accuracy in CA1 but not in the DG.

These observations indicate that the correlations we are de-

stroying should be considered signal correlations rather than

noise correlations, at least in CA1. The variability across visita-

tions can probably be explained by the fact that neurons encode

multiple variables in a consistent way and may induce the

observed neural correlations (Wood et al., 1999; Allegra et al.,

2019). This situation would be similar to the one discussed in Fig-

ure 3 (e.g., passes 1 and 2 would correspond to two visitations of

location A with a different direction of motion); i.e., the disruption

of the correlations decreases the performance of the decoder. In

Figure S15, we show, in simulations, that this is indeed the case.

We considered a model where the neural activity depends on

multiple variables; for instance, the position of the animal, the di-

rection ofmotion, etc. Each variable can assume a discrete set of

different values, and every set of values of the encoded variables

defines one specific condition. We then constructed different

neural representations by arranging the different conditions in

the space of neural activities. In particular, we considered two

scenarios, one with unstructured representations, where

different conditions are represented by different random vectors

in the activity space, and one with a kind of structured geometry

that is beneficial for generalization across conditions (Bernardi

et al., 2018). In both cases, the encoded variables are linearly

separable; i.e., they can be decoded with a linear classifier. We

then compared the linear decoder’s performance before and af-

ter destroying the correlations, as we did in the real data, for

different numbers of conditions in each scenario.

In most of the scenarios we simulated, the decoder perfor-

mance is either disrupted, or it remains the same when the cor-

relations are destroyed. The beneficial effect of the correlations

is maximal when the representations are fairly unstructured. In

the case of random representations, the effect is maximal for a

certain number of conditions. This number depends on the num-

ber of encoded variables and on the number of values each var-

iable can hold (i.e., the total number of conditions). Our experi-

mental observations that show that the decoder’s performance

is disrupted more in CA1 than in the DG are compatible with a

scenario in which the representations in CA1 are unstructured,

similar to the simulated representations obtained with the

random model. Our results also show that the representations

in the DG are compatible with at least two scenarios: (1) they

could be structured, as we described them in Figures S15D–

S15F, or (2) they could also be unstructured as in CA1 but with

a different number of encoded variables, either very small or

very large. It is important to stress that the scenarios studied in

Figure S15 are all plausible in the sense that they are based on

representations that have already been observed in other studies

(Rigotti et al., 2013; Bernardi et al., 2018). However, the exam-

ples we report are certainly not exhaustive, and so we cannot

exclude that other codes we did not consider may be more

appropriate to describe DG and CA1 representations.

One alternative explanation for the difference between CA1

and the DG comes from the fact that the performance reduction

that follows the disruption of correlations depends on the level of

activity of the cells and that CA1 and the DG exhibit different

levels of activity. However, in our data, this difference in activity

levels could not fully account for the difference between CA1 and

the DG in the effect of destroying correlations because we did

not observe any performance reduction in the DG when the level

of activity was matched to the one observed in CA1 (Figure S14).

Our simulations where multiple variables are encoded are

compatible with recent models of the hippocampus that empha-

size its role in memory compression (Gluck and Myers, 1993;

Benna and Fusi, 2019), and memory prediction (Dayan, 1993;

Stachenfeld et al., 2014, 2017; Gershman et al., 2012; Recana-

tesi et al., 2018; Whittington et al., 2019). For all of these models,

the neural representations in the hippocampus are constructed

by learning the statistics of the sensory experiences to generate

compressed representations of the memories to be stored or,

when focused on temporal sequences, to generate a prediction
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of the next memory (successor representation). Future theoret-

ical work will establish more quantitatively whether this scenario

is fully compatible with our observations and what the different

roles of CA1 and DG could be in this compression process.

Average Activity in the DG Is Larger Than in CA1
One of the observations that requires some discussion is that the

average activity in the DG is larger than that in CA1 in our data.

This might sound surprising, but a careful review of the literature

shows that our observations are compatible with other studies

(Figure S3; Table S1). Indeed, the average firing rate that is re-

ported varies from study to study, depending on the recording

technique, the type of experiment, and whether rats or mice

were employed. Our conclusion is that our results fall within

the range of values reported in the existing literature. The review

reported in the Table S1 is not exhaustive by any means, but we

believe it is highly representative of the existing literature.

Conclusion
Our results strengthen the hypothesis that the neural code in the

DG and CA1 area of the hippocampus is highly distributed and

that it is important to analyze it using a population approach

(Fenton et al., 2008; Meshulam et al., 2017; van Dijk and Fenton,

2018). Analysis of the averaged response properties of individual

neurons is certainly informative, but it is not sufficient to charac-

terize the neural code of a brain area. Critically, the role of the DG

and CA1 area of the hippocampus should be revisited in light of

our observations. The methods we propose will shed new light

on the general role of other brain areas implicated in high-level

cognitive functions, such as spatial navigation, and in which

place cells are not observed.
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Lead Contact
Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Stefano Fusi (sf2237@

columbia.edu).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
The datasets and analysis code supporting the current study are available from the lead contact on request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
All procedures were conducted in accordance with the U.S. NIH Guide for the Care and Use of Laboratory Animals and the institu-

tional Animal Care and Use Committees at New York State Psychiatric Institute and UCSF. Adult male C57BL/6Jmice were supplied

by Jackson Laboratory and were used beginning at 8-12 weeks of age. Mice were co-housed with litter mates (2-5 per cage). Mice

were maintained with unrestricted access to food and water on a 12-hour light/dark cycle.

Viral Constructs
For calcium imaging, AAVdj-CaMKII-GCaMP6mwas packaged and supplied by Stanford Vector Core at titers of� 4X1012vg/ml, and

AAV1-Syn-GCaMP6f.WPRE.SV40 was packaged and supplied by U Penn Vector Core at titers of � 2X1012vg/ml.

METHOD DETAILS

Calcium imaging
Mice were prepared for in vivo calcium imaging as previously described (Resendez et al., 2016). For dorsal DG imaging, mice were

injectedwith a virus encodingGCaMP6m (AAVdj-CaMKII-GCaMP6m) at the following coordinates:�1.95AP, 1.4ML, 2.2, 2.1, 2.0, 1.9

DV, � 90nl per site) and a � 1:0mm diameter, � 4mm long GRIN lens (Inscopix, Palo Alto, CA) was implanted at (�2.0AP, �1.4ML,

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

AAVdj-CaMKII-GCaMP6m Stanford Vector Core Cat#GVVC-AAV-89

AAV-DJ-CaMKIIa-GCaMP 6f Stanford Vector Core Cat#GVVC-AAV-90

AAV1-Syn-GCaMP6f.WPRE.SV40 U Penn Vector Core Cat#AV-1-PV2822

Experimental Models: Organisms/Strains

C57BL/6J mice Jackson Laboratory CAT#000664; RRID:SCR_004633; http://

www.jax.org/index.html

Software and Algorithms

Ethovision XT 10 Noldus https://www.noldus.com;

RRID:SCR_000441

Mosaic Inscopix https://www.inscopix.com

MATLAB Mathworks https://www.mathworks.com/products/

matlab.html; RRID:SCR_001622

CNMF-E Zhou et al., 2018 https://github.com/zhoupc/CNMF_E

Scikit-learn Pedregosa et al., 2012 https://scikit-learn.org

Decoding Algorithm This paper N/A

Spatial information Skaggs et al., 1992 N/A

ll
Article

Neuron 107, 1–14.e1–e4, August 19, 2020 e1

Please cite this article in press as: Stefanini et al., A Distributed Neural Code in the Dentate Gyrus and in CA1, Neuron (2020), https://doi.org/10.1016/
j.neuron.2020.05.022



�1.95 DV). For dorsal CA1 imaging, mice were injected with a virus encoding GCaMP6f (AAV1-Syn-GCaMP6f.WPRE.SV40) at the

following coordinates: (�2.15AP, 1.85ML, �1.55, �1.65DV, 256nl per site) and a GRIN lens was implanted at (�2.15AP, 1.30ML,

�1.30DV). Three weeks after surgery, mice were checked for GCaMP expression with a miniaturized microscope (Inscopix, Palo

Alto, CA) with procedures previously described (Resendez et al., 2016). Anesthetized mice were checked for GCaMP+ neurons

and a baseplate was attached to the skull at the optimal imaging plane. For all the mice presented in this report the histology

confirmed the adequate placement of the lens (Figure S22). For dorsal DG imaging, oneweek later, micewere imaged during foraging

in an open field task andwere habituated to the room and enclosure (30min), then 24 hours later they were imaged as they foraged for

sucrose pellets in an open field enclosure (50cm2). For dorsal CA1 imaging, mice were imaged during exploration of an open field

enclosure. Mice were habituated to the room and enclosure (10 minutes) and then imaged 30 minutes later. Imaging frames were

recorded with nVista acquisition software (Inscopix, Palo Alto, CA), and time-synced behavior was acquired using EthoVision XT

10. Calcium imaging videos were acquired at 15 frames per second with 66.56 ms exposure.

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavior data pre-processing
The behavior was recorded using a webcam (Logitech) mounted on the ceiling about 3 feet above the arena. The instantaneous po-

sition of the animal was then extrapolated from the video using custom code written in Python using the Scikit-image library (version

0.13.0). We first applied a 9 points piecewise affine transformation to correct for barrel camera distortions.We then applied a smooth-

ing filter with a Gaussian profile to reduce the effect of pixel intensity noise due to low lighting and low image resolution and applied a

threshold to the gray-scale converted image to get a few contiguous regions of pixels as candidate animal tracking. We then used a

method based on the determinant of the Hessian to identify blobs in the pre-processed images and verified that the largest blob was

consistently found to be corresponding to the animal silhouette. Hence, we used the center of the largest blob as the tracked position

of themouse. We further temporally aligned the position data to the imaging data using linear interpolation and smoothed themwith a

7 frames timewindow. Lastly, we identified the time bins in which the speed of the animal was lower than 2 cm/s for more than 1 s and

discarded them from the analysis, unless specified.

Signal extraction and spike deconvolution
All calcium movies were initially processed in Mosaic (Inscopix, Palo Alto, CA) for spatial binning and motion correction and subse-

quently analyzed using a recently developed software algorithm written in MATLAB (Mathworks) called CNMF-E (Zhou et al., 2018).

Briefly, the algorithm separates the large, low-frequency fluctuating background components from the signal produced by ofmultiple

sources in the data, allowing the accurate source extraction of cellular signals. It involves a constrained non-negative matrix factor-

ization problem optimized for endoscopic data whereby calcium temporal dynamics and the shape of spatial footprints are used as

constraints. It includes 3 main steps which are iterated: obtain a first estimate of spatial and temporal components of single neurons

without direct estimation of the background; estimate the background given the estimated neurons’ spatio-temporal activity; update

the spatial and temporal components of all neurons while fixing the estimated background fluctuations. In each of these steps,

manual intervention guided by visual inspection based on temporal profile and spatial footprint shape allowed to further improve

the quality of the signal extraction. The result of this process consists of a list of deconvolved calcium events for each cell with asso-

ciated time-stamp andmagnitude and the convolved trace with a calcium decay profile estimated for each cell independently on the

basis of the raw trace.

For our decoding analysis, we did not use the original traces, rather we used the events extracted with CNMF-E convolved with an

exponential kernel. The time constant of the kernel was optimized to maximize the cross-validated position decoding performance

and was equal for all neurons. The results depend only weakly on the kernel time constant, and qualitatively are the same (see Fig-

ure S1). All other quantities derived from the calcium traceswere computed using the calcium events, unless specified otherwise, and

therefore their values do not depend on the shape of the kernel.

Place fields and heading direction tuning
Place fields for each extracted source were constructed in a manner similar to established method applied to electrophysiology data

(Leutgeb et al., 2007). We used the calcium events of each cell as its putative spiking activity. We then summed the total number of

events that occurred in a given location, divided by the amount of time the animal spent in the location and smoothed using a

Gaussian kernel centered on each bin. The rate in each location x was estimated as

rðxÞ =
Pn

i =1g
�
si�x
h

�
R T

0
g
�
yðtÞ�x

h

�
dt

where g is a Gaussian smoothing kernel, h= 5 sets the spatial scale for smoothing, n is the number of events, si is the location of the

i-th event, yðtÞ the location of the animal at time t and ½0;TÞ the period of the recording. In this and all subsequent analysis we removed

the time bins in which the animal had a speed of less than 2 cm/s for more than 1 s, unless specified otherwise. Similarly, for heading
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direction tuning, we first discretized the directions of motion into 8 angular bins of 45 degrees each and then computed the mean

event rate for each cell in each of the 8 bins.

Spatial information statistics
To quantify the statistical significance of the rate maps we measured their specificity in terms of the information content of cell

activity (Allegra et al., 2019; Danielson et al., 2017; Skaggs et al., 1992). We used a 16x16 square grid and computed the amount

of Shannon information that a single event conveys about the animal’s location. The spatial information content of cell discharge

was calculated as a mutual information score between event occurrence per cell and animal position or equivalently using the

formula:

SI =
XN
i = 1

pi

ri
r
log2

ri
r

where i is the spatial bin number, p is the probability for occupancy of bin i, ri is the mean event rate at bin i and r is the overall mean

event rate. We applied the same formula to the direction of motion after discretizing the full angle to 8 bins of 45 degrees. For both

measures, we corrected for the sampling bias problem in information measures (Panzeri et al., 2007) using shuffled distributions of

event occurrences as follows. For each cell independently, we discretized time, generating a long vector of 0’s (no event) and 1’s

(event). We then randomly permuted the elements of this vector and for each permutation we computed the resulting spatial infor-

mation. We repeated this procedure 1000 times, therefore obtaining 1000 values of spatial information to which we compared the

original information content (Ziv et al., 2013; Danielson et al., 2017; Meshulam et al., 2017; Allegra et al., 2019). We labeled a cell

as place cells or a heading direction cell if the original value of spatial information exceeded 3 sigmas from the shuffled distribution

(see also Figures S2 and S3 and Table S1).

Decoding position
For all the datasets, unless otherwise specified, we used 10-fold cross validation to validate the performance of the decoders. We

divided the trial in 10 temporally contiguous periods of equal size in terms of number of datapoints after excluding datapoints cor-

responding to immobility. We then trained the decoders using the data from 9 of them and tested on the remaining data. To decode

the position of the animal, we first divided the arena into 8x8 equally sized, squared locations. We then assigned at each time bin the

label of the discrete location in which the animal was found. For each pair of locations, we trained a Support Vector Machine (SVM)

classifier (Cortes and Vapnik, 1995) with a linear kernel to classify the cell activities into either one of the two assigned locations using

all the identified cells, unless specified otherwise. We used only the data corresponding to the two assigned locations and to correct

for unbalanced data due to inhomogeneous exploration of the arena we balanced the classes with weights inversely proportional to

the class frequencies (Pedregosa et al., 2012). The output of the classifiers was then combined to identify the location with the largest

number of votes as the most likely location (Bishop, 2006). For each choice of train and test set, we computed the median decoding

error as themedian of the physical distance between the center of the decoded discrete location and the actual position of themouse

in each time bin of the test set, unless otherwise specified. The final decoding performance was then computed as themean of all the

median errors across the different choices of train and test sets.

Chance level decoding performance
To assess the statistical significance of our decoders, we computed chance distributions of decoding errors from shuffled data.

This can be done in different ways and we chose a conservative procedure that maintained some structure of the data while de-

stroying the relation between the behavior, e.g., the animal’s position, and the calcium event time series. Briefly, we discretized

time obtaining a vector of positions (or other behavioral variables). We then flipped this vector in time (e.g., the last data point

of position became the first datapoint and vice versa) an then shifted the whole vector in time by a random amount in a torus,

i.e., points that went beyond the time limits of the data were reinserted from the other side. This procedure destroys the relation

between behavior and neural activity, but preserves the time correlations of both the time series representing behavior and, of

course, the time series of the neural activity (which remains untouched). For each random shift, we trained a new decoder on

the data and pooled all the errors obtained. We finally assessed the statistical significance of the decoding error for the 10-fold

cross-validation of the original data by comparing it to the distribution of errors obtained from the manipulated data using the

non-parametric Mann-Whitney U test, from which we obtained a p value of significance. We implicitly assumed that the 10-folds

are statistically independent (the 10 testing time intervals considered for the 10-folds did not have any overlap). This is the proced-

ure we used in all our figures unless specified otherwise.

Another less conservative shuffling strategy is to manipulate the calcium events. We assigned a random time bin to each calcium

event for each cell independently while maintaining the overall density of calcium events across all cells, i.e., by choosing only time

bins in which there were calcium events in the original data and keeping the same number and magnitude of the events in each time

bin. This method destroys spatial information as well as temporal correlations but keeps the overall activity across cells. We verified

that our results did not depend on the particular strategy adopted (see Figure S3 and Table S1).
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Decoding the direction of motion
One behaviorally relevant quantity that was available to us was the direction of motion of the animal. Unfortunately, the visual tracking

didn’t allow for a direct estimate of the direction of motion. The head direction was also not easily measurable so we resorted to using

the positional information to extract the direction of motion. We computed it by using two subsequent datapoints in the animal x-y

trajectory. We discretized the values into 8 angles and then applied similar decoding strategies as for position decoding, i.e., we used

a battery of linear-kernel SVM decoders to distinguish between pairs of angles after balancing the dataset through class weighting.

We report themedian error in radiant on the left-out data of the 10-fold cross validation. We applied themethods described above for

position decoding for assessing the statistical significance of the results.

Decoding speed
To decode the speed of movement of the animal we first computed the speed of motion using two consecutive positions and as-

signed the computed speed to the later time bin among the two. To decode the instantaneous speed of motion we used Lasso (Tib-

shirani, 1996), a linear regression analysis method that minimizes the sum of squared errors while selecting a subset of the input cells

to improve decoding accuracy and interpretability of the results. We applied the methods described above for position decoding for

assessing the statistical significance of the results.

Bayesian decoder
The Bayesian decoder is a theoretical optimal probabilistic method to decode information for the activity of the neural population. It is

based on the Bayes rule and has been extensively used to decode position from electrophysiological data from the hippocampus

(Zhang et al., 1998; Wilson and McNaughton, 1993). Briefly, if x is a discrete position in the arena, we estimate the position using:

PðxjrtÞ = PðrtjxÞPðxÞ =PðrtÞ
where rt is the activity of the population at time t and assuming independent activity of different neurons. The algorithm computes

PðxjrtÞ for all discrete positions and assigns the predicted position to the one that maximizes it:

bxt = argmax
x

PðxjrtÞ:

Importance index
The importance index was introduced to quantify the contribution of each cell in a population to the decoding of a given quantity. We

applied amodified version of a traditional method for feature selection inmachine learning. In our analysis, a feature of the input space

consists of one DG cell. Feature selection is performed using the weights of the decoder after fitting model to the data. In our case,

since we employed multiple decoders, one for each pair of physical location in the arena, we introduced a method to combine the

weights assigned to the cells by each decoder. We defined the importance index of cell i as:

ui =
X
k

jwik jP
j

��wjk

��
wherewik is the weight of the k-th decoder assigned to the i-th cell (and equivalentlywjk is the weight of the k-th decoder assigned to

the j-th cell). The indices i, j run through all cells in the population and k runs through all the binary decoders.

Procedure to destroy correlations
To destroy correlations without impacting the spatial information of single neurons, we considered multiple passes through single

discrete locations in the arena. We then shuffled the calcium event occurrences between different passes in the same location.

Importantly, we corrected the activity of each pass for the different amount of time spent in each pass by radomly sampling events

instead of replacing them in order to reduce artifacts. We verified that the correction does not impact decoding when sampling from

the same pass (see Figure S14).

Software
The data analysis has been performed using custom code written in Python (version 2.7.12) and routines from the Scipy (ver. 0.19.0),

Numpy (ver. 1.11.3) and the Scikit-learn (0.19.1) (Pedregosa et al., 2012) packages. The source extraction has been performed using

MATLAB (Mathworks, R2016a) andCNMF-E (Zhou et al., 2018) using the same parameters across animals andminimal manual inter-

vention only for obvious non-cell like sources based on spatial profile shape and temporal profile dynamics.
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Supplemental Material
Supplemental Material S1: Preprocessing; Related to Fig. 1

a

b

Figure S1: Preprocessing. Here we illustrate the type of signals extracted using CNMF-e that we used
for our analysis. The algorithm’s output is composed of a spatial footprint, the raw calcium signal, the
denoised signal, the calcium events timings for each cell and their magnitude. a) Example of fluorescence
signal extracted using CNMF-e (Zhou et al., 2018). The raw, denoised and event signals correspond to
the output of the algorithm. The raw signal corresponds to the fluorescence levels attributed to the single
sources when the contaminating signal due to neuropil in the background and to neighbouring sources
have been eliminated. This signal includes noise due to the recording apparatus. The convolved signal is
the one used in this work and is obtained using an auto-regressive model that uses the estimated calcium
event timings. The parameter of the model as well as the calcium event times, the spatial footprints and
the background estimation are all part of the minimization process in CNMF-e (Zhou et al., 2018). In
our analysis we used the calcium events times because these gave us the closest estimates of each cell’s
activity. We then convolved the calcium events in time with a decaying temporal profile to cumulate
information in time. Similar procedures have been used in the past to amplify the signal with temporally
sparse data (Ziv et al., 2013). b) Median Error (mean ± s.d.) of the position decoding for different time
scales of the exponential kernel used to convolve the calcium events. The chosen time scale corresponds
to the one that minimizes the position decoding error (2.2 s in this example, 12 samples).

1/37



Supplemental Material S2: Place-cells; Related to Fig. 4

a

b

Figure S2: Place-cells. a) Gaussian-smoothed event density maps for a selection of cells, normalized
by the mouse’s occupancy time per 16x16 unit area and the cell’s maximum response in the 50 cm x 50
cm arena (Ziv et al., 2013). The cells have been ordered by the statistical significance of their spatial
information, from the most to the least significant. Here we show the group of 18 cells with the most
significant SSI (place cells) and the 18 with the least significant SSI (non place-cells, red-borders) from
the dentate gyrus of a representative mouse (DG3). b) Histogram of SSIs for all the DG cells recorded for
mouse DG3 computed with the event shuffling method (blue) and the trajectory shuffling method (orange).
In order to quantify the spatial tuning of the cells, we applied standard methods used in electrophysiology
to measure the spatial information contained in the activity of each cell using the calcium events (Skaggs
et al., 1993). We corrected for the sampling bias problem (Panzeri et al., 2007) by using a shuffling
approach. We quantified the tuning of the cells by the statistical significance of the spatial information
content (SSI). Similar to what we did for assessing the chance level decoding (see Fig. S5), we used
two shuffling methods for assessing the SSI of each cell. The first method (blue histogram) consisted in
shuffling the event timings, as it is commonly used in the definition of a place cell. We identified place
cells as those with an SSI>3. For comparison, here we report a second method which consisted in time
reversing the animal’s trajectory (”flip”) and then shifting it in time by a random amount (”roll”). This
second method preserves the activity of all cells while destroying its association to the position of the
animal and therefore it’s more conservative (see also Fig. S3). The latter method highlights the importance
of adopting the correct null hypothesis to assess the spatial information of the cells. In our recordings,
many of the cells that are classically classified as place cells have a spatial information content that is
not statistically different from the one obtained by a conservative shuffling of the trajectory which still
disrupts the association between a cell’s activity and the mouse position at each time point. In the text, we
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used the former definition for consistency with the literature.
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Supplemental Material S3: Fraction of place cells and activity levels in DG and CA1;
Related to Fig. 4

a b

Events Rate Threshold (evs/s)

c

DG CA1

DG CA1

Figure S3. Reported values of overall activity levels and hence place cells ratios in CA1 and DG
vary considerably across labs. This is due to a combination of factors, including different recording
techniques, different statistical methods used to assess spatial tuning and differences in experimental
protocol. Here we compare the significance of spatial information in the populations of CA1 and DG cells
we identified and relate it to the activity levels in these areas in general, and then compare the levels of
activity we observed with the existing literature. In both CA1 and DG areas, place cells were the minority
of cells, however place cell ratios where very different (36% in DG, 4.2% in CA1). One reason for this
difference could be in the lower activity levels we found in CA1 cells compared to DG. Place cell studies
in rodents hippocampus have found higher place cell ratios when animals run through a linear track (Ziv
et al., 2013). Talbot and colleagues (Talbot et al., 2018) found that 47.8% of the recorded CA1 cells
were place cells but they used spatial information measure alone (Skaggs et al., 1993). The lower ratio
of place cells in our report could be due to a higher sensitivity for sparsely active cells of our method
with respect to standard extracellular recording approaches. Despite the likely presence of some false
negatives in the single calcium event detection, even cells with a very small number of sufficiently strong
calcium events are detected by the source extraction algorithm we used. Also in other recent studies,
calcium imaging has revealed larger proportions of sparsely active cells suggesting these populations have
been largely underestimated in electrophysiology studies (Dipoppa et al., 2018; Tang et al., 2018). In
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particular, the CNMF-e algorithm uses both spatial footprints and temporal components to separate cells
from background contamination and from other sources (Zhou et al., 2018). Instead, typical clustering
methods for extracellular recordings may bias identification towards more densely active cells because
these are more likely to be pulled out from the noise through clustering. This bias ultimately results in
an overabundant representation of place cell ratios in the population. To validate our hypothesis, we first
confirmed that the difference in activity levels between DG and CA1 cells was not due to the different
calcium indicator used. a) Control that differences in activity levels between DG and CA1 are not due to
the different calcium indicator used. We analyzed imaging data from granule cells in dentate gyrus after
viral injection of GCaMP6f in two additional mice and found activity levels perfectly compatible with our
GCaMP6m recordings, hence we conclude that differences in activity levels were not due to the calcium
indicator used (a). Mean number of calcium events as extracted by CNMF-e across the whole session
in all the DG(6m), DG(6f) and CA1(6f) mice. Each dot corresponds to one mouse. Bars correspond to
mean values across mice. We then looked at the relation between activity levels in terms of event rates and
spatial information (see (b). b) Scatter plot of the significance of spatial information (SSI) as a function
of event rates across a session for all cell populations in DG (left) and CA1 mice (right). c) Proportion
of place cells in DG (black, left axis) and CA1 (red) after removing cells based on their mean activity.
We removed weakly active cells in both CA1 and DG populations with a varying threshold to see if we
could artificially bias either population to artificially high place cell ratios. For each threshold on activity,
we report the SSI for the selected cells (gray dots) and the corresponding proportion of place cells in the
remaining population (black: DG; red: CA1). In our study we used a strict threshold of three standard
deviations for significance (solid lines) however we also report the same proportion for a threshold of
1.96σ , corresponding to a 95% significance for spatial information as considered in some place cells
studies (Kinsky et al., 2018). In line with our hypothesis, we could obtain higher place-cells ratios by
choosing an appropriate threshold on activity. For example, if we didn’t record any signal from cells with
less than 0.12 events per second, we would have observed about 30% of place cells in CA1 and 40% of
place cells in DG across all mice. The horizontal dashed and solid lines correspond to the significance
thresholds for SSI for the corresponding curves (gray scale on the right-hand side of the plot). Solid lines:
proportions computed using 3 standard deviations of the shuffled SSI distribution to assess whether a
cell’s SSI was statistically significant. Dashed lines: proportions computed on 95-th percentile threshold,
i.e., using 1.96 standard deviations. The dots represent the SSIs for all cells with an activity that was
larger than the given activity threshold on the x-axis. In conclusion, although differences between DG
and CA1 place cell number may depend on several other factors such exposure times during habituation,
our analysis suggests that the main drive for place cell counts and differences between these two areas
comes from the different activity levels. In particular, a non-negligible proportion of CA1 cells are more
sparsely active than previously reported and therefore CA1 place cells may have been over represented in
place cells studies. We encourage researchers to adopt a more systematic assessment of the significance
of the spatial information as we suggest in our work and to always report at least the proportion of place
and non-place cells that are found. See also S1 for a discussion on the variability of reported rates in the
literature.
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Supplemental Material S4: Dependence of decoding performance from the number of
cells in CA1 and DG; Related to Fig. 2

Figure S4: Dependence of decoding performance from the number of cells in CA1 and DG. For
each given number of cells, a random selection of cells from the pool of identified cells is used to decode
the animal’s position using 10-fold cross-validation. The selection is repeated 10 times for each animal
and for each number of cells. We then pooled all the results from all the animals to report the mean (solid
line) and standard deviations (shaded area) of the median errors for position decoding for each given
number of cells (independent samples t-test for significance, *p<0.05, **p<0.01, ***p<0.001). The
maximum number of cells we used corresponds to the minimum number of cells we could record from
any animal in DG or CA1.
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Supplemental Material S5: Chance level decoding performance; Related to Fig. 2

DG1 DG2 DG3

Figure S5: Chance level decoding performance. It is important to assess the performance of the
decoder to a chance performance, i.e., the performance of a prediction that is not based on the recorded
activities but solely on the behaviour of the mouse. The important factors that must be considered in the
case of decoding continuous behaviour, are represented by the auto-correlations of the neural activities and
of the behaviour. Therefore, for evaluating the chance performance one must take into account these factors
in order to avoid underestimating the performance obtained by chance and therefore overestimate the
ability of the decoder to extract the information under consideration. We computed the chance performance
by training a position decoder on artificially manipulated data. We used two methods: the first method
consisted in shuffling the calcium events in time by keeping the overall instantaneous event rate across
the population constant (‘chance shuffled’). The second method consisted in applying a time reversal
operation to the animal x-y trajectory and then shifting it in time by a random amount. Data points falling
outside the temporal window due to the shifting where reinserted from the other end of the period as
in a torus.We then trained the decoder on a cross-validated manner in which the data was split into 10
chunks of contiguous data, 9 of which were used for training and the remaining one for testing the decoder.
For both methods of shuffling, therefore, we obtained the 10-fold cross validated performance which we
aggregated all together in each animal and applied a Mann-Whitney U non-parametric test to compare the
resulting distribution to the original data (***p<0.001). In this figure we report the performance (mean ±
s.d.) for the position decoders for all the animals for the two chance levels in grey and for the original data
in black. The decoding performance is significantly above chance for both choices of chance level and
the difference between the two methods is negligible. Gray bars: chance level performance (mean ± st.
dev.) for shuffling calcium events in time (‘chance shuffled‘) and for the ‘flip-roll‘ strategy, which keeps
the original correlation structure of the data intact while disrupting the association between behavior and
calcium recordings. Black: decoding performance on the original data (Mann-Whitney U, ***p<0.001,
10-fold cross-validation)
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Supplemental Material S6: Comparison of different decoding strategies; Related to Fig.
2

a b

Figure S6: Comparison of different decoding strategies. To decode the animal’s position and direc-
tion of motion, we used a battery of linear decoders trained on pairs of locations obtained by dividing
the arena into a series of discrete locations and assigning the location label to each time bin in the data
(see Methods). In this way we could use the weights of the single decoders, properly combined, to obtain
an overall importance index for the cells in the population. To verify that our decoding performance did
not depend on the specific choices we made, we performed the following comparisons. First, we verified
that the choice of signals used for decoding did not have an impact on the position decoding. Using the
convolved calcium events instead of the raw traces as described in Fig. S1 does not have a significant
effect on the performance of our decoder (data for a representative mouse DG3 in a). We also verified
that the choice of the binning to discretize the arena did not have a significant impact on the decoding
performance, which allowed us to keep the same bin size on all analyzed sessions (b). a) Median error
for decoding position on 10-fold cross validation for raw traces as extracted from CNMF-e, denoised
traces, and convolved traces using calcium events convolved with an exponential kernel. b) Decoding
error as a function of the number of spatial bins in which the arena is discretized (representative DG
mouse, DG3, mean and st.dev. over 10-fold cross-validation). For each data point, the arena is divided
into N×N squares of same size, and the size N is reported on the x-axis. The dashed line corresponds to
the choice of an 8×8 grid of locations of approximately 6cm side as used in the article. Although smaller
bins (larger N) might allow for a more precise determination of the position of the animal, they would also
contain a smaller number of data points and therefore limit the accuracy of the decoders. The median error
decreases rapidly when N is small, but then it decreases slowly and it becomes almost constant for N > 8.
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Supplemental Material S7: Position decoding error and speed are negatively correlated;
Related to Fig. 2

a b

Figure S7: Position Decoding error and speed are negatively correlated. A mouse’s movement
and immobility states are often considered two distinct behavioral conditions, characterized by distinct
neural activities, and have been therefore considered separately for analysis in the literature. In our work,
we focused our analysis on the data collected during movement following a typical procedure in the
hippocampal research, see for example (Leutgeb et al., 2007). We then asked whether the accuracy the
decoded position was related to the speed of movement. First, we decoded the position of the animal
using only the datapoints during movement for training and testing on all datapoints. a Decoding error at
different decoding speed using only datapoints detected as movement for training. Each point corresponds
to one time bin (***p<0.001). On the x-axis, we plot the instantaneous speed of movement in one animal
(data from the dentate gyrus of a representative animal DG3). The decoded position is taken as the centre
of the discrete location that is selected by the decoder in each time bin. The red vertical line corresponds
to the value we used as a threshold to distinguish between movement and immobility on the training
data. b) Same as in a but all the datapoints have been used for training (***p<0.001). To verify that the
negative correlation was not due to the fact that the datapoints corresponding to immobility were not used
in the training set, we repeated the procedure using all the datapoints during training. In both cases we
found a significant negative Pearson-R correlation, suggesting that the animal’s position was encoded
more accurately during locomotion.
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Supplemental Material S8: Temporal stability of the importance index; Related to Fig. 4

a b

Figure S8: Temporal stability of the importance index. We introduced an importance index that
quantifies the contribution of each cell to the population code. We know from the analysis in the main text
that the ranking of the cells based on the importance index depends on the cells that are considered for
decoding. So we know it is not an intrinsic property of the cell. However, given a population of cells that
is used to estimate the importance index, it is interesting to ask whether the rank of a cell changes over
time. To answer this question, we ranked the cells from the dentate gyrus using the first 10 minutes of data
from the 30 minutes trials. We computed the decoding performance using the 20 best cells (ranked high),
20 cells that ranked in the middle and the 20 cells in the lowest part of the ranking. We then decoded
position using each group of cells in different chunks of data of 10 minutes at the beginning of the session
and in the next 10 minutes of data. If the cells’ ranking changed, we’d expect a different performance for
each group of cells since they were defined using the ranking in the first 10 minutes. Instead, we saw no
significant changes in decoding performance for the high, middle and low-ranked cells. This indicates
that the importance of each cell is relatively stable over time, at least when the decoding performance
is considered. a) Decoding performance for three groups of cells 20 cells divided by their ranking in
importance index. Black: decoding performance for 10-fold cross-validation within the first 10 minutes of
data. Blue: decoding performance in the following 10 minutes of data after training on the first 10 minutes
(Mann-Whitney U, n.s. p>0.05, **p<0.01, ***p<0.001). b) Decoding performance for subsequent
groups of 20 cells ranked by their importance index. Black: cells were ranked using the importance index
computed on the first 10 minutes of data. Blue: cells were ranked based on the weights computed on the
next 10 minutes of data. We applied a procedure like that of Fig.4 of the main text to better assess whether
the ranking in one time-period could be used to rank cells in another time period. We first computed the
decoding performance in the first 10 minutes of the trial using subsequent groups of cells ranked by their
importance index computed in the same time window. We then compared these results with the ones
obtained by decoding position during the next 10 minutes of the trial. The two plots largely overlaps,
therefore the importance indices obtained in one temporal window can be used to select the important
cells in another temporal window.
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Supplemental Material S9: Importance index and spatial information; Related to Fig. 5
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Figure S9: Importance index and spatial information. Limited data, such as low firing rate, introduce
a systematic bias in the estimation of the information content in neural activities (Panzeri et al., 2007).
Our results show that a more sensible choice is the one of the SSI, a measure of the strength of the spatial
information after compensating for this bias. Furthermore the importance index was weakly correlated
the SSI. We also showed that importance index and SSI are correlated. Here we additionally show that
importance index and spatial information have a low and even negative correlation factor (Pearson-R
correlation, ***p<0.001). a) Relation between importance index and spatial information for all recorded
animals (grey: all cells, black: cells with more than 10 calcium events identified, Pearson-R reported in
each plot, ***p<0.001). Each dot in the plots represents one cell. The histograms for each of the quantities
are shown on the sides of each plot. This result is further evidence that the spatial information alone may
be a misleading factor in estimating the contribution of a cell to encoding position if not validated through
an assessment of its statistical significance. b) Left: Relation between the baseline spatial information
per cell (obtained by shuffling events in time for each cells) and events rates (left), importance index
and events rate (middle) and spatial information baseline and importance index (right). In each panel,
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each dot corresponds to one cell in a representative animal (DG3). The spatial information baseline is
computed as the mean spatial information over the shuffled distribution. Spearman-ρ correlation values
and significance are reported in each plot. The baseline and the importance index are negatively correlated
due to their relation to event rate. Intuitively, the negative correlation between spatial information baseline
and importance index is due to the fact that low activity introduces spurious stimulus-dependent differences
in the response probabilities used to compute information (Panzeri et al., 2007; Kelemen and Fenton,
2010). These make the neuron seem more informative (high spatial information) despite its low importance
in the population for position encoding.
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Supplemental Material S10: Decoding performance using only place cells; Related to Fig.
4

Shuffled Original Shuffled Original

Figure S10: Decoding performance using only place cells. Using only place cells, the decoding
performance is close to the best performance we obtained in DG (left, chance performance in grey) but
rather limited in CA1 (middle panel). This is because the decoding performance depends on the number of
place cells used, which is limited in CA1 (right). (Mann-Whitney U, *p<0.01, **p<0.005, ***p<0.001.)
Left and Middle: Median decoding position error using only place cells for CA1 (left) and DG (middle)
animals (each bar represents mean and st.dev.; Mann-Whitney U test, *p<0.05, **p<0.005, ***p<0.001,
see Methods). Right: Median decoding error for all CA1 (black) and DG (red) animals for each 10-fold
cross-validation within the 10 minutes sessions aligned to the corresponding number of cells isolated in
the corresponding FOV.
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Supplemental Material S11: Control for correlation between movement direction and po-
sition; Related to Fig. 7
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Figure S11: Control for correlation between movement direction and position. We showed in the
main text that we can separately decode position and direction of motion and that the neural code for
these two variables appears distributed across the neural population (Fig. 7). Our strategy was to show
that the important cells for decoding position could be used to decode the direction of motion. However,
it could be that the reason why direction could be decoded using the important cells for position was
that direction and position were correlated. Indeed, when the animal is very close to one the border of
the arena, the direction of movement can only assume values that point towards the inside of it. The
decoder could in principle use this information to decode direction of motion from the important cells
for position, therefore confounding our results. To exclude this possibility, we computed the mutual
information between direction of movement and position and compared it to the distribution obtained with
500 shufflings of data from the same session from the animal with the most homogeneous coverage of the
environment. a) Mutual information between position and direction of motion for shuffled data in the same
session (blue histogram) and real data (red vertical line). Top panels: original data with positions close to
the arena walls. Bottom: filtered data as in b. DG in top left panel, CA1 in top right panel, same animals
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as in Fig. 7. In the shuffled data, position was time reversed and shifted similarly to what was done for
evaluating the chance performance (see also Methods in the main text). The mutual information in the real
data (red line) lies within the distribution of mutual information for shuffled data (blue histogram, one
sample t-test, ***p<0.001) for DG, hence the knowledge of one variable is not enough to predict the value
of the other variable, but not for CA1. We attribute this difference to the effect of the borders in the CA1
experiments, in which a rectangular arena of half the size than the one for DG mice was used. b) To further
verify that the correlation between direction of motion and position did not explain the results of Fig.
7b, we repeated the decoding analysis after removing from the data all the positions that were recorded
in the spatial bins closest to the walls of the arena. Here we show the trajectory of a representative DG
mouse (DG3). Positions close to the walls of the arena, i.e., beyond the dashed lines, were eliminated
from the data. Grey: mouse trajectory. Black dots: positions included in the analysis. Same DG mouse as
in Fig. 7. After this manipulation, the mutual information between position and head direction becomes
indistinguishable from the chance distribution in both DG and CA1 (bottom panels in a) and we were
still able to decode position from the most important cells for direction and vice versa, as we did for the
original data in the text, for both DG and CA1 mice (see c and d). c) Decoding error for important cells
for position (left) and direction (right) from a representative DG mouse, same procedure as in Fig. 7b in
the main text but after removing border data as in b. d) Same as in c but for the CA1 mouse of Fig. 7b.
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Supplemental Material S12: Temporal stability of the decoder; Related to Fig. 2
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Figure S12: Temporal stability of the decoder. We asked whether the representations for position
changed within a recording session. To do this, we used the 30 minutes trial available in our data (animal
DG3, data from the dentate gyrus). We trained a position decoder on a shifting window of 10 minutes
of data and tested in on a shifting window of 1 minute of data. a) Position decoding performance as a
function of the distance in time between training set and test set. Each dot corresponds to one choice of
training and test set, the grey line joins the mean values on pooled data for each bin of distance in minutes,
bars are standard deviations within the binned distances. The performance of the decoder is remarkably
strong and stable for a period of time extending to the available 20 minutes in the trial, although with some
slow degradation towards the more distant time windows (a-c). This result shows that position is encoded
with strong accuracy on the populations of cells whose coding properties extend long in the trial and it
seems compatible with results in literature showing that the representation of position is stable across
sessions despite the large degree of variability on the tuning properties of single cells (Ziv et al., 2013). b)
Data as in (a) but datapoints for which the test precedes the training set are on the negative side of the
x-axis. We looked for evidence of a difference between testing the decoder in past time periods and future
time periods with respect to the training period. To determine whether decoding data temporally preceding
the training data (past) was different from decoding following data (future), we linearly interpolated the
decoding performance and obtained two weakly significant Pearson correlation factors of 0.3 for the future
(**p<0.01) and 0.22 for the past (*p<0.05). Given the weakness of our statistical test we couldn’t detect
a difference between these two trends. Therefore, the performance on the test data does not depend on
whether the decoder was trained on a past or on a future interval. c) Data as in (b) where the points have
been fitted with a linear regression for test data that is in the future with respect to training data (left)
or in the past (right). Reported correlation values correspond to the Pearson’s R correlation (*p<0.05,
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**p<0.01). d) We compared the stability of the decoder in DG and CA1 animals by repeating the analysis
within 10 minutes of the session for all animals. For short training times (down to 1 minute) the decoding
error was relatively stable on most animals but was much lower that the best decoding performance we
obtained for those animals. We then increased the training time to verify that this was not due to a low
temporal stability of the code but rather to the small size of the training set. In all animals the performance
drastically improved with training set size. These results further suggest that both in DG and in CA1 the
code for space is relatively stable within a session and further studies will further investigate this important
aspect of the spatial code. Top: DG animals. Bottom: CA1 animals. Each panel corresponds to one animal.
Each line in different shades of gray corresponds to a different choice of training time (test time is always
1 minute). Each dot represents the median error for one choice of training and test time. The decoding
performance for different test periods (y-axis) are sorted according to the temporal distance between the
test period and the closest datapoint in the training period (x-axis), regardless of whether the test period
preceded or followed the training period (ttest is the time of the first time bin of the test period, analogously
for ttrain). In each one-minute bin, mean and st.dev. are computed and plotted.
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Supplemental Material S13: The information about position is distributed: distributions
of importance indices in DG and in CA1; Related to Fig. 5
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Figure S13: The information about position is distributed. One way to compare how populations
of cells represent information is to compare the distribution of their importance indices. We computed
the Gini index on the distribution of importance indices to assess whether the information about position
was distributed across multiple cells or instead carried by a small minority. The Gini coefficient (Gini,
1912) is a measure of statistical dispersion among values of a certain frequency distribution. It is often
used as a measure of inequality of income levels. Low values correspond to a large degree of equality,
i.e., people share large proportions of the total wealth of the population. High values often identify
situations in which wealth is concentrated on a small number of people. In the same spirit, we used the
Gini coefficient to evaluate how the importance index was distributed across cells in our recordings. a)
To illustrate the dependence of the Gini value from the underlying distribution, we first describe how
different distributions result in different Gini indices. We considered three different distributions, from
high inequality to low inequality. Here we show the distributions (left) and corresponding Lorenz curves
(right) for simulated data: a uniform distribution (green), a distribution with low inequality (orange), as
in the case of a distributed code, and one with strong inequality (blue) as in the case of a specialized
code with few important cells and many unimportant cells. The first one is the Pareto distribution, a
power-low distribution commonly used to describe social phenomena, including distribution of wealth.
In this distribution, importance is concentrated on a small fraction of cells whereas the vast majority of
cells have a low importance, as in a specialized code (left panel, in blue). We also considered a uniform
distribution of importance whereby a cell importance is determined by chance (left panel, in green). Lastly,
we considered a Gaussian distribution centered around a middle value. This case results corresponds
to a highly distributed code since the vast majority of cells shares a similar amount of importance (left
panel, in orange). The first step for computing the Gini index consists in evaluating the Lorenz curve,
which represents what proportion of cells shares a certain proportion of importance. The area under the
Lorenz curve is then compared to an ideal situation whereby all cells have the exact same amount of
importance, resulting in a straight Lorenz curve, and hence in an area under the curve of 1/2 (dashed black
line). Finally the Gini index is computed as the proportion of the area defined by this ideal distribution
that is not covered by the Lorenz curve of the data. In the right panel we plot the Lorenz curves for the
three distributions we considered and their respective Gini index values. As expected from intuition, the
most equal distribution is the Gaussian distribution (right). This distribution results in an extremely low
value of Gini (colored inset values on the right). b) The Gini index and the distribution of the importance
indexes across neurons. We computed the Gini index on the values of importance indices for both DG and
CA1 and found low values of Gini (between 0.11 and 0.23), indicating that the code is highly distributed.
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Histograms of importance indices from the data across all DG (top) and CA1 animals (bottom). Gini index
numbers are reported in each plot.
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Supplemental Material S14: Procedure to destroy correlations and controls; Related to
Fig. 8
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Figure S14: Procedure to destroy correlations and controls. a) Schematic description of the proce-
dure for destroying correlations in one discrete location in the arena. The red dots correspond to the time
bins of the recorded calcium events along the mouse trajectory (gray line) through the area of interest
(dashed line). Time bins in which an event was recorded are identified with a tick mark on top of the red
mark. Light red marks correspond to datapoints recorded before the animal enters and after it exits the
area and are not considered. For each location, we focused on all the passes of the animal through that
location and identified the entrance and exit times of each one. Then for each pass, we substituted the
recorded calcium events in that pass with the ones of an other randomly chosen pass. To account for the
different number of time bins in the different passes, we randomly sampled from activity from the second
pass. The procedure showed an effect in CA1 data but not in DG (see b). This suggests different coding
properties as discussed in the text. b) Decoding error for original data, shuffled data as in a and shuffled
data when the new data was generated from the same pass to control for artifacts due to sampling. Left,
DG. Right, CA1 (Mann-Whitney U test, ***p<0.001). To verify that random sampling did not introduce
artifacts that would affect decoding performance, we verified that when we sampled from data within the
same pass the decoding performance was not significantly affected (’shuffle-within’). After this procedure,
we were confident that any effect we would observe was only due to having destroyed correlations among
neurons. When we shuffled data within the same pass, we saw no effects in either CA1 nor DG data. c)
The effects of destroying correlations do not depend on the choice of the kernel time scale that was used
to convolve the sequences of events. Left: shape of the kernel function used to convolve the calcium

20/37



event data. In the main text we used 2.4 s. Right: decoding error for the original and the shuffled data
in representative DG (left) and CA1 (right) mice for different choices of kernels, as in Fig.8 in the main
text (Mann-Whitney U test, **p<0.005, ***p<0.001). d) The effects of destroying correlations depend
on sparsity. Sparsity was induced by randomly selecting a given proportion of detected calcium events.
We report the performance on shuffle data (black bars) compared to the original decoding performance
(grey bars) for all the DG animals at different levels of sparsity. The red vertical line corresponds to the
equivalent factor to obtain similar activity levels to those of the CA1 animals, for reference (Mann-Whitney
U test, *p<0.05, **p<0.005, ***p<0.001). When we artificially reduced the number of events in our DG
mice we observed a significant decrease of performance for increasing sparsity, however in two of the
three analyzed animals the reduction was not significant at a level of sparsity that was comparable to CA1.

21/37



Supplemental Material S15: The effects of dimensionality on neural correlations and
decoding performance; Related to Fig. 8
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Figure S15: The effects of dimensionality on neural correlations and decoding performance. In
our work we suggested that, at least in CA1, the neural correlations should not be considered as noise
but rather as a reliable signal. We showed that destroying the neural correlations had an effect on the
ability of our decoder to predict the animal position from CA1 activities. The effect was smaller in DG. In
general, the effect of destroying correlations on decoding performance depends on the geometry of the
neural representations (Abbott and Dayan, 1999), i.e., how the patterns corresponding to the different
combinations of behavioral variables are distributed in the space of population activities. How do the
effects of destroying correlations depend on the geometry of the neural representations? Here we studied
in simulations a few cases to understand under what assumptions we should expect a disruption of the
performance when the correlations are destroyed. We started by considering neural representations in
the space of population activities. These are determined by different combinations of discrete behavioral
variables, each of which corresponds to an experimental condition. In the experiments, some of the
behavioral variables would be under direct control, such as the discretized animal’s position or movement
direction, while others are not. For each condition we generated a prototype pattern of population activity
and a cloud of points around it by adding isotropic Gaussian noise of zero mean and unit variance (see
S15). This cloud of points thus represents a set of recordings for that condition, similar to the ones
generated by multiple passes of the animal through a given location in the environment as in Fig. 3 in
the main text. Following our hypothesis, we generated many such clouds in the space of neural activities
for the various combinations of hypothetical behavioral variables the neural activity is subject to and
assigned half of them to one class, corresponding for example to one location, and half of them to another
class, corresponding to a second location. The fact that the representations of each location consists of
multiple conditions, naturally induces correlations among neurons in the population. This is because the
activity of one neuron is tightly coupled to the activity of other neurons as prescribed by the patterns
corresponding to that location. To study the effects of destroying correlations between, we first considered
the cross-validated ability of a linear decoder to correctly classify the two hypothetical locations. Then, we
shuffled the data in a way similar to what we described in the Methods to destroy the correlations among
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neurons while keeping the information on location. Briefly, for each location, we chose one observed
level of activation in that location for each neuron independently. This effectively violates the coupling
imposed by the patterns of the conditions representing one location and therefore destroys correlations
among neurons. Importantly, while this manipulation effectively destroys the correlations among neurons,
it does not affect the statistics of the activity for each neuron with respect to each location, i.e., the spatial
tuning of the neurons is not affected. We repeated this procedure multiple times to generate a new dataset
of data without neural correlations. After this manipulation we trained again our decoder and compared
the decoding performance with the one computed on original data, as we did for the neural recordings in
the main text. To being our study of how the geometry of the neural correlations affects decoding, we
considered two common scenarios observed in neural data (Rigotti et al., 2013; Bernardi et al., 2018),
one in which the neural representations are ’unstructured’ and one in which they are ’structured’. The
first situation can be generated by randomly distributing the different conditions in the space of neural
activities, as in a. For the second situation we considered abstract variables, i.e., the conditions were
positioned at the corners of a low-dimensional hypercube randomly rotated in the space of neural activities
as in d (Bernardi et al., 2018). To visually describe the situation, in b and e we show these two scenarios
in the simple case of two neurons. We further restrict our description to the case of two conditions per
location, which could correspond for instance to two directions of motion in the data. The colored regions
separated by a straight line represent the decision function of a linear classifier trained on cross-validated
data, hence the red points lying on the red regions are correctly classified as are the purple points lying on
the blue region. Vice versa, the points lying on a region of different color are incorrectly classified. In the
case of unstructured data, the four clouds of points appear randomly distributed (b) and, in this example,
they are linearly separable. The multiple conditions impose correlations between the two neurons, in a
way similar to what we discussed in Fig. 3 in the main text. Indeed, after destroying the correlations,
the two location are no longer linearly separable and therefore the performance of the decoder can only
worsen. The situation in the high-dimensional space of the population activities doesn’t have such a
straight forward graphical interpretation and so it is not straight forward to predict what would happen in
the high-dimensional case. Thus, we performed simulations in the high-dimensional case (50 neurons)
and compared the decoder performance before and after destroying the correlations for increasing number
of conditions (c). We found that the effect of the correlations increases with the number of conditions (c),
it reaches a maximum and then it decreases again for higher numbers of conditions. Moreover, when the
number of conditions becomes comparable to the maximum number of neurons (50 in our simulations),
the two locations may be non-linearly separable also before destroying correlations, depending on the
specific random arrangement, and so the error rate increases also for the original data. In the case of
structured neural representations, the situation is different (d, e, f). For this scenario, we generated the
patterns in a way that follows abstraction as defined in (Bernardi et al., 2018) (d). As in the previous
case, we first looked at a low-dimensional case of two neurons and two conditions per location (e). In
this case the effect of the correlations is much weaker, as it is shown by the fact that also after destroying
correlations the representations of the two locations are still linearly separable. To numerically explore the
high-dimensional case, we performed similar simulations as before and varied the number of conditions
while preserving the structure of abstraction (e). We observed that even for a large number of encoded
variables the effect of destroying correlations was negligible in this case. Taken together, these results
show that the geometry of the neural representations imposes neural correlations can be beneficial for
decoding performance. In some of the cases we examined we also found that the effect can be negligible.
It is important to note that there can be other scenarios that we did not consider here but even with the
few simple cases we described we found several conditions that seem compatible with our experimental
data. Furthermore, it is interesting to note that the type of neural correlations that we considered in these
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models are not induced by a non-negligible covariance in the direction of the noise of neural activities.
Rather they are induced by the presence of relatively small regions of the space of population activities that
correspond to reliable representations to experimental conditions. It will the subject of further studies to
investigate what classes of models can lead to such sparse representations. The impact of destroying neural
correlations depends on the dimensionality of the neural representations and affects high dimensional
representations more than low-dimensional ones. b) Two-dimensional projection of the activities recorded
ad different times in each of the four conditions in a. The line separating the red and purple regions of
the space corresponds to a linear separation of the red and purple locations. Left: original data. Right:
datapoints obtained after destroying correlations as explained in the Methods. c) Decoding position, i.e.,
decoding performance for discriminating red from purple conditions, as a function of the number of
conditions for original and shuffled data. Half of the conditions are randomly assigned to each class. d-f)
Same as in a-c but the conditions are arranged on the vertices of an hypercube as in d.
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Supplemental Material S16: The effects of shuffling on pairwise correlations; Related to
Fig. 8
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Figure S16: The effects of shuffling on pairwise correlations. Our procedure for destroying corre-
lations shows a significant effect in CA1. To further characterize these effects, we studied the pairwise
correlations before and after the shuffling. Although pairwise correlations only partially reflect the struc-
ture of correlations that is disrupted by our procedure for destroying correlations, because they include
those induced by the similarity of tuning among cells, one may wonder if they would be sufficient to
describe the situation. However, it is important to notice that pairwise correlations include those imposed
by the tuning profiles of the cells (often referred to as signal correlations). In contrast, our procedure was
specifically introduced to study the effect of correlations that appear on single passes through one location
(often called noise correlations). When we destroy correlations, therefore, we disrupt those induced by
the influence of variables other than position, i.e., a combination of noise and other potential signals
that influence the cell activity such as movement direction. We show in Fig. 8 of the main text that our
procedure does not disrupt spatial tuning of the cells. It could be therefore misleading to draw conclusions
from the pairwise correlations alone about how they influence the conjunctive representations of other
variables. Rather, we would like to make the point that by looking at the effects of destroying correlations
while keeping the spatial tuning of the cells we can select hypothesis on the relations between the encoded
variables, as we show in Fig. S14. Our analysis suggests that the structure of the pairwise correlations
is only partially informative and that is important to use more sophisticated quantities to investigate the
role of neural correlations. a) Here we show the pairwise correlation matrices for DG (top) and CA1
(bottom) animals computed using the calcium event time series across the entire session (three FOVs for
each area). The values of the correlations are overall low in both regions, with medians around 0.1-0.2
but long positive tails (see the distribution in b, absolute values). b) Histograms of pair-wise correlations
across all cells, computed across the entire session, pooled across mice (3 in DG and 3 in CA1) before
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(red and black) and after applying the shuffling procedure to destroy the correlations (gray histograms;
see Methods). We did notice a difference in the overall distribution of pairwise correlation values in the
two different areas. In particular, CA1 distributions seem to show a stronger peak for negative values
and tend to have a smaller frequency of values around 0. The distributions didn’t qualitatively change
after destroying the correlations through shuffling in either region. c To investigate correlations with
finer detail, we studied their marginal distributions within single locations in the arena (histograms for
all DG and CA1 cells combined across animals). Insets show a magnification of the y-axis. The peak of
the distribution of the correlations across pairs of neurons was negative and small in magnitude since in
the vast majority of passes only a few cells are active at any point in time. However, there are several
pairs of neurons with a relatively strong correlation, as shown in the insets. As expected, the peak of the
distribution was concentrated within a short interval of small negative values since in the vast majority of
passes only a few cells would be active at any point in time. We then focused our attention at the positive
side of the distribution (inset), since it is the largest contribution to correlations (in absolute terms). In
line with our main results, we found higher positive correlations in CA1 than in DG (Mann-Whitney
U, ***p<0.001). d) In both regions pairwise correlations are affected by our procedure. Here we show
the distribution of the positive noise (in-location) correlations. In line with our main results, we found
higher positive correlations in CA1 than in DG. Whisker plots show median, quart-percentile boxes, 5th
and 95th percentile whiskers and Mann-Whitney U statistical tests for significantly different distributions
(***p<0.001). Altogether, these results further confirm that although some correlations exist within
DG, pairwise correlations only partially explain the effects on decoding that are caused by our shuffling
procedure.
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Supplemental Material S17: Importance and decoding performance for position; Related
to Fig. 4

DG

CA1

Figure S17: Importance and decoding performance for position. Decoding performance for cell
ranking. Top: DG animals. Bottom: CA1. One animal per panel. See Fig. 4a in main text.
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Supplemental Material S18: Importance and decoding performance for direction; Related
to Fig. 6

Figure S18: Importance and decoding performance for direction. Decoding direction performance
for cell ranking. Top: DG animals. Bottom: CA1. One animal per panel. See Fig. 6a in main text.
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Supplemental Material S19: Importance and spatial information; Related to Fig. 5

CA1 Animals

DG Animals

Figure S19: Importance and spatial information. Relation between importance index and significance
of spatial information. Top: DG animals. Bottom: CA1. One animal per panel. See Fig. 5 in main text.
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Supplemental Material S20: Importance for direction and direction information; Related
to Fig. 6

Figure S20: Importance for direction and direction information. Relation between importance index
for direction of motion and significance of direction information. Top: DG animals. Bottom: CA1. One
animal per panel. See Fig. 6 in main text.
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Supplemental Material S21: Importance for position and importance for direction; Re-
lated to Fig. 7

Figure S21: Importance for position and importance for direction. Relation between importance
index for position and importance index for head direction. Top: DG animals. Bottom: CA1. One animal
per panel. See Fig. 7 in main text.
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Supplemental Material S22: Histology and lens placement
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Figure S22: Histology and lens placement. Confocal image for DG (left) and CA1 (right). For all the
mice presented in this report the histology confirmed the adequate placement of the lens.
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Supplemental Material S23: Relation between correlations and importance index; Re-
lated to Fig.4,8

a b

O
ri
g
in
a
l

O
ri
g
in
a
l

S
h
u
ffl
e
d

S
h
u
ffl
e
d

Figure S23: Relation between correlations and importance index. To study the relation between
correlation and importance index, we looked at the importance index of single cells before and after
destroying correlations among cells. In this way we could measure the independent contribution of single
cells to the encoding of position since correlations were destroyed. On the one hand, after our shuffling
procedure we would expect that the contribution of a cell to position encoding should be more tied to
single cell properties such as spatial tuning. On the other hand, the shuffling procedure does not destroy
the correlations that are induced by the relative tuning of cells to a given spatial location, often referred to
as signal correlations, and therefore we would still expect some relation between importance index and
spatial tuning. For instance, if multiple cells encode the same location, we would expect their importance
index to be generally lower than that of cells tuned to location where no other cells are tuned to. Indeed, in
our data we found that in most of our animals the correlation between importance index and significance
of the spatial information becomes stronger after destroying correlations, suggesting that single cells
properties become more relevant in the case of independent coding. However, the effect is marginal so
that also in after destroying correlations both place and non-place cells contribute to accurate position
decoding. Therefore, also after destroying correlations single cell properties don’t fully explain importance
index. Finally, we’d like to stress that in Fig. 4c we decoded position from non-place cells alone, defined
as cells that do not pass a threshold for location-specific tuning. These results show that our findings are
not an artifact of the choice of decoding position but are rather a manifestation of the distributed nature of
the spatial code. a) Scatter plot of importance index in relation to the significance of spatial information
(SSI) for all cells of a representative animal DG3. Left: original data. Right: same as in the left panel
but with data in which correlations were destroyed through shuffling. P-values for Pearson-r correlations
between the two quantities are reported on top of each panel. b) Values of Pearson-r correlations between
importance index and SSI in original data (grey dots) and shuffled data (red, CA1; black, DG) for all the 6
mice analyzed. For the shuffled data, mean values of importance index across 20 shufflings was used.
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Supplemental Material S24: Control for poorly segmented cells; Related to Fig.4,8
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Figure S24: Control for poorly segmented cells. One may wonder if the main conclusions are due to
the fact that most of the weakly spatially tuned cells may result from poor unit discrimination in the FOV.
We rejected this hypothesis be removing the poorly discriminated cells and verifying that position could
be decoded from non-place cells and that destroying correlation has still an effect in CA1.

To isolate the cells resulting from poor discrimination we used the signal-to-noise-ratio between the
raw florescence and the deconvolved calcium trace:

SNR =
||C||2

||C−Craw||2

where C is the denoised calcium trace and Craw is the raw calcium signal after background removal. This
quantity has been introduced by the authors of the CNMF-e algorithm to assess the quality of the extracted
signals (Zhou et al., 2018). We then looked at the relation between the place code and the quality of the
segmentation. To verify that our main conclusions were not due to poorly identified cells classified as
non-place cells, we introduced a criterion of a minimal signal to noise ratio of SNR=2. Our main results
that position could be decoded from non-place cells and that destroying correlations had an effect on CA1
remain valid when we selected only neurons with a signal to noise ratio larger than 2. a) Position could be
decoded from non-place cells also when the analysis is restricted to non-place cells whose SNR is higher
than 2. Here we show the decoding position error for all DG (top) and CA1 (bottom) animals for non-place
cells (blue) and also for non-place cells for which the signal-to-noise ratio (SNR) after source extraction
from the video was higher than 2 (Mann-Whitney U test for significance, ***p<0.001). b) Decoding
position error for original (light colors) and shuffled data (bright colors) after destroying correlations. Only
cells with an SNR>2 were used in the decoding (28%, 91%, 98% in the 3 DG mice; 21%, 22%, 82% in
the 3 CA1 mice). We therefore conclude that although untuned cells in our data are overall more likely to
have a low SNR as result of poorer signal extraction than tuned cells, the main conclusions are not due to
this type of artifacts in the imaging technique.
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Table S1

Authors Notes Mean rate
CA1 (Frank et al., 2001) R, Ep, T-maze 0-5Hz

(Lee et al., 2004) R, Ep, enriched mean 1.1Hz, max 8.7Hz
circular track

(Kelemen and Fenton, 2010) R, Ep, shock av. 0-2Hz
(Mizuseki et al., 2012) R, Ep, multiple taks (0.88±1.23)Hz
(Bittner et al., 2017) R, Ep, 1D 25Hz (peak in field)
(Ziv et al., 2013) M, Im, 1D 0.1-0.5 ev/s
(Xia et al., 2017) M, Im, two-chamber ∼0-0.2 ev/s
(Allegra et al., 2019) M, Im (2p), 1D, virtual, 0.1-0.05 ev/s
Our work M, Im, open field 0.06 ± 0.04 ev/s

DG (Jung et al., 2093) R, Ep, 8-arm 0-0.2Hz
(Nitz and McNaughton, 2004) R, Ep, open field, 15-30Hz (10-20Hz in CA1)
(Leutgeb et al., 2007) R, Ep, open field, 0-10 Hz (mean in-field)

lots of mossy 5-25 Hz (peak)
(Neunuebel and Knierim, 2012) R, Ep, square 5-20 Hz (peak)
(Pilz et al., 2016) M, Im (2p), wheel, 0.01 ev/s
(Danielson et al., 2016) M, Im (2p), wheel, 0-0.003 ev/s

threshold-based inference
(Allegra et al., 2019) M, Im (2p), 1D, virtual, 0.1-0.05 ev/s

higher selectivity in DG
Our work M, Im, open field 0.15 ± 0.12 ev/s

Table S1: Firing rates in CA1 and DG. Related to Fig.4 Mean rates on CA1 and DG cells in spatial
tasks (R=rats, M=mice, Ep=e-phys, Im=calcium imaging). One of the observations of our study is that
the average rate of events in DG is larger than in CA1. Here we review the literature to show that our
observation is compatible with the values that are reported, especially if one considers the high variability
across different studies. Differences in behavioral protocols may strongly affect overall activity. This is
especially true for a region like the hippocampus that is highly involved in a host of cognitive processes
integrating information from virtually all the sensory areas and having a big role in memory. Most of the
studies on the hippocampus in spatial tasks focus on 1-dimensional (1D) tracks (wheels or treadmills)
where rats or mice are trained to collect rewards at the ends of a treadmill (e.g., experiments from the
Buzsaki, Ziv, Schnitzer, Golshani, Dombeck, Losonczy labs among others) or specific mazes with several
explicit cues (Knierim, Frank labs). These protocols are specifically designed to study particular properties
of the activity of hippocampal cells and it may be inadequate to directly compare them to our study. Studies
in freely moving rats include shock-zone avoidance (Kelemen and Fenton, 2010) and tasks combining the
location of stimuli with other properties of the task such as identity and memory of previous trials (Wood
et al., 1999). A relatively smaller number of studies has considered rats foraging in open fields (e.g.,
experiments from the Leutgeb, Moser, McNaughton labs) with a relatively small number of explicit or
controlled cues. The reported quantities are also defined in various ways, for instance firing rates may
be reported as mean rates across sessions (often of the order of 1 Hz) or as peaks within field (often
of the order of 5-20Hz – in addition while fields are defined more or less in similar ways, cells with
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significant fields are defined in inconsistent ways across studies). Furthermore, they may refer to different
behavioural states (e.g., locomotion or immobility) or averaged across states. Thus, the firing properties
of CA1 and dentate gyrus neurons can vary widely depending on the parameters of the experimental
protocols. Differences in recording techniques are also important and they are probably one of the main
sources of variability in estimates of neural activity. The rate of events reported in calcium imaging studies
is always significantly smaller than the rate of spikes recorded using electrophysiological techniques. This
is not surprising given that the techniques are very different (calcium is only a proxy of neuronal spiking)
and often the neurons recorded using calcium imaging are of different types (see for example (Harvey
et al., 2009; Dombeck et al., 2010; Ziv et al., 2013)). In electrophysiology, cells are isolated through
clustering and selected using properties such as rates and shape of the action potential. A relatively large
number of spikes is needed to isolate cells, introducing a bias toward most active neurons. Some labs
include recordings during sleep to increase their statistical power but regions such as the dentate gyrus may
express different activity profiles during sleep (Neunuebel and Knierim, 2012). In calcium imaging, cells
are selected by viral expression and morphology. This allows to visualize the isolated cells, but spiking
activity can only be inferred from the calcium signals. Through the relevant literature, we observe that
electrophysiology studies typically report firing rates that are one order of magnitude higher than ”calcium
event rates” in imaging studies. Due to the relatively low sampling rate (5 Hz in our study, up to 30 Hz in
other studies) and the slow temporal profile of the florescence profiles, spikes may go undetected in calcium
imaging. Hence, it is highly likely that calcium events are in fact due to multiple spikes collected in a short
time frame. Also, several spikes may simply be lost throughout the session due to low signal-to-noise.
Lower event rates for calcium imaging with respect to electrophysiology are therefore expected. Important
differences exist also among calcium imaging techniques, more specifically between one (or single) and
two-photon imaging. One crucial step in the processing of calcium imaging videos is that of segmentation,
i.e., the identification of the regions of interest (ROIs) in the field of view from which to compute the
fluorescence signals and hence each putative cell’s activity. Cell segmentation is very different in one and
two-photon imaging. One-photon imaging relies on algorithms such as CNMF-e, which are sensitive to
the statistics of cellular activities. Higher activity generally leads to improved source separation because
of the resulting higher signal to noise ratio (SNR) in fluorescence signal, hence one-photon imaging may
have a bias towards more active cells. Instead, in two-photon imaging cells are more easily identified, even
in the case they are silent, and so manual segmentation or automated techniques only based on spatial
profiles (e.g., apparent shape of the ROI) can be used. The bias of one-photon imaging is partially reduced
by the fact that CNMF-e uses both spatial and temporal dynamics profiles to separate signal sources,
hence typically even cells with low signal to-noise ratio and low activity are identified as separate sources,
but a bias may still exist compared to two-photon imaging. The CNMF-e method has quickly become
the de facto standard in the mini-endoscope imaging field, and now it is also been used in two-photon
imaging studies together with other tools for automated segmentation (Pachitariu et al., 2017). Although
CNMF-e data is now available for both techniques, it is still difficult to compare one and two-photon
imaging because two-photon imaging is used in head-fixed preparations (e.g., mouse on a treadmill) rather
than in freely-moving animals as one-photon imaging allows for. Still, it is possible that one-photon
techniques underestimate the fraction of inactive cells, with a consequent inflation of the fraction of active
cells and place cells (see also (Danielson et al., 2016)). An additional note should be made about methods
of inference of cellular activity from fluorescence signals. This operation typically consists of many steps
and has been rapidly evolving in the last few years thanks to the introduction of automated methods
necessary for large scale imaging (from hundreds to tens of thousands of cells). While earlier studies
applied thresholding to the fluorescence signal (typically measured as changes over an estimated baseline,
∆F/F) to estimate cellular activity in time, more recent methods use more sophisticated approaches based
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on models of calcium dynamics to get a more precise estimation of cellular activity (Dombeck et al., 2007;
Mukamel et al., 2009; Pnevmatikakis et al., 2016; Pachitariu et al., 2017; Zhou et al., 2018). Thresholding
may obviously lead to underestimating cellular activity since one calcium event may be caused by multiple
spikes closely occurring in time like in bursts. Ziv and colleagues used a different approach whereby a
positive trend in fluorescence signal was associated to spiking activity (Ziv et al., 2013). These different
preprocessing choices constitute a further element of variability in the reported data, especially since
calcium dynamics is not always known with high precision, depending on cell types and calcium indicators
used, among other factors. More research will be needed to evaluate calcium imaging techniques against
a ground truth of intra- or juxta-cellular recordings. This is a very active field of research and the data
collected with these techniques may still reflect their methodological variability. With all these premises
in mind, it is anyway useful to review the literature in which the authors report the activity of neurons
in the dentate gyrus and in CA1. The firing properties of dentate gyrus granule cells are still relatively
poorly understood. Most of the works that report sparsity arise from immediate gene expression studies
and from rat studies by the Moser, Leutgeb, McNaughton and Knierim labs (among others). Notice that
sparsity is often used with different meanings. Here we refer to the fraction of cells that are active, and
not to the average activity of each neuron. Recent work from Goodsmith and Knierim (GoodSmith et al.,
2017) has highlighted the difficulty in identifying granule cells using tetrode recordings. Based on cell
morphology, histology and viral expression, we are highly confident that our signals correspond to the
activity of granule cells of the dentate gyrus. We therefore believe that our study is the first to show dentate
gyrus granule cells activity in freely moving foraging task in an open field. This makes any comparison
with previous literature more difficult. Among the literature, we highlight a few recent works worth of
note. A recent work by Allegra and colleagues (Allegra et al., 2019) finds very similar calcium activity
profiles for CA1 and DG cells, though with a much lower spatial selectivity for CA1 cells. One of the most
careful assessment of DG GCs activities (GoodSmith et al., 2017) finds rates for DG similar to CA1 with
a 20-30% ratio of place cells in DG. Nitz and McNaughton (Nitz and McNaughton, 2004) report higher
rates for DG cells while rats explored a novel rather than a familiar environment. This we report all the
most relevant results from the literature. Overall, our observations are compatible with existing literature
within the variability across studies. Notice that the differences between DG and CA1 in terms of overall
activity are much smaller than the variation across studies. We therefore believe that the question of which
area is more active in spatial tasks and what the ratios of place cells are in these regions remain open. We
believe that imaging studies like ours targeting such comparison may strongly contribute to strengthening
our understanding of the different computational properties of CA1 and DG (see for example (Allegra
et al., 2019)). In conclusion, although differences between DG and CA1 place cell number may depend on
several other factors such exposure times during habituation, our analysis suggests that the main drive
for place cell counts and differences between these two areas comes from the different activity levels. In
particular, a non-negligible proportion of CA1 cells are more sparsely active than previously reported and
therefore CA1 place cells may have been over represented in place cells studies. We encourage researchers
to adopt a more systematic assessment of the significance of the spatial information as we suggest in our
work and to always report at least the proportion of place and non-place cells that are found.
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