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SUMMARY
Animals must discern important stimuli and place them onto their cognitive map of their environment. The
neocortex conveys general representations of sensory events to the hippocampus, and the hippocampus
is thought to classify and sharpen the distinctions between these events. We recorded populations of den-
tate gyrus granule cells (DG GCs) and lateral entorhinal cortex (LEC) neurons across days to understand
how sensory representations are modified by experience. We found representations of odors in DG GCs
that required synaptic input from the LEC. Odor classification accuracy in DG GCs correlated with future
behavioral discrimination. In associative learning, DG GCs, more so than LEC neurons, changed their re-
sponses to odor stimuli, increasing the distance in neural representations between stimuli, responding
more to the conditioned and less to the unconditioned odorant. Thus, with learning, DG GCs amplify the
decodability of cortical representations of important stimuli, which may facilitate information storage to
guide behavior.
INTRODUCTION

Animals have a cognitive map of their surroundings that is

constantly updated to optimize behavior (McNaughton et al.,

2006; Olton et al., 1979). Any given element of their surroundings

may not carry immediate meaning, but with reinforcement, ani-

mals will learn to approach or avoid cues that predict salient out-

comes and ignore others. One way that neural populations may

implement this form of encoding is by increasing the distance

between neural representations of cues through the process of

learning, effectively ‘‘separating’’ a salient from a non-salient

stimulus.

One potential locus of this computationmay be the hippocam-

pus (HPC), which not only contributes to spatial navigation and

memory (Eichenbaum et al., 2007; Olton et al., 1979; Tulving

and Markowitsch, 1998) but also encodes non-spatial stimuli

and the relationship between these behaviorally relevant vari-

ables (Aronov et al., 2017; Igarashi et al., 2014; Li et al., 2017;

MacDonald et al., 2013;Martin et al., 2007). However, how expe-

rience can impact the representations of non-spatial stimuli in
the HPC has remained largely unexplored. Here, we turned to ol-

factory stimuli to investigate how dentate gyrus granule cells (DG

GCs) encode and separate incoming sensory information. Early

anatomists noted the extensive connectivity and proximate loca-

tion of the hippocampus with other parts of the olfactory system

and accordingly included the hippocampus as a central node in

the rhinencephalon or ‘‘nose brain’’ (Broca, 1878; Eichenbaum

and Otto, 1992). Subsequent electrophysiological studies re-

vealed that odorants were uniquely capable as sensory stimuli

in eliciting a burst of activity in the DG; however, technical con-

straints limited a more complete understanding of how the DG

encodes and processes this information (Vanderwolf, 1992; Wil-

son and Steward, 1978). Extensive work has elucidated how ol-

factory information is represented at initial sensory-processing

centers, such as the olfactory bulb and piriform cortex (Bathellier

et al., 2008; Bolding and Franks, 2017; Iurilli and Datta, 2017;

Meister and Bonhoeffer, 2001; Roland et al., 2017; Sosulski

et al., 2011; Stettler and Axel, 2009; Uchida and Mainen, 2003;

Xu and Wilson, 2012), yet little is known of the logic by which

odorant stimuli are represented or learned within the DG.
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Figure 1. Odor Responses in DG GCs

(A) Experimental design. GCaMP6f is expressed in DG GCs for two-photon microscopy imaging of odor responses in DG GCs in awake-behaving mice.

(B) Standard deviation projection of in vivo two-photon image from a representative DG FOV. Scale bar: 50 mm.

(C) Odor-evoked neural responses in 9 example DGGCs, spatial footprints of identified ROIs on left, with denoised calcium traces on right (odor delivery periods

indicated with shading).

(D) Normalized calcium events and cell maps from DG GC FOVs. Example cell responses during exposure to a six-odor panel (20 trials). Normalized Ca event

magnitude was generated by dividing each event magnitude by themean event magnitude across the session and averaged across trials. 4-s odor delivery times

noted below raster, with average responses above trace (mean [black] plus SEM [gray]).

(E) Odor responses are sparse and randomly distributed in the FOV. Spatial footprints shown are from an examplemouse, withmodulation index for each cell (see

STAR Methods).
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Anatomical studies suggest odor-related information is trans-

mitted to the DG via inputs from the lateral entorhinal cortex

(LEC) (Eichenbaum et al., 2007; Hargreaves et al., 2005; Leitner

et al., 2016; Witter et al., 2017), which itself receives olfactory in-

puts via both direct projections from the olfactory bulb and affer-

ents originating in the piriform cortex and cortical amygdala

(Heale and Vanderwolf, 1994, 1999; Krettek and Price, 1977;

Leitner et al., 2016; Room et al., 1984; Shipley and Adamek,

1984; Vanderwolf, 1992; Wilson and Steward, 1978). In addition,

the DG has been hypothesized to disambiguate cortical repre-

sentation of sensory stimuli, so as to create less or non-overlap-

ping outputs to the downstream CA3 subfield of the HPC

(Aimone et al., 2011; Knierim and Neunuebel, 2016; Yassa and

Stark, 2011). However, how learning impacts this process, and

whether olfactory representations are separated at the level of

DG neural activity, remains largely unknown.

In order to understand how theDG classifies cortical represen-

tations of salient olfactory stimuli, we performed in vivo chronic

two-photon imaging of the LEC and DG. We investigated (1)

how DG GCs and LEC neurons represent olfactory stimuli, (2)

whether LEC is the main input for olfactory information to DG,

and (3) how DG GCs and LEC neurons change their responses

with learning. We found that odor identity is robustly represented

in the DG and that the degree to which the DG classified odor-
174 Neuron 107, 173–184, July 8, 2020
ants was directly related to discrimination of these cues during

context recall. Odors were more accurately classified in popula-

tions of cells within the DG than LEC, and with learning, the DG

GCs flexibly changed their representations of odor stimuli more

so than LEC neurons, increasing the distance in neural represen-

tation between stimuli and responding more to the conditioned

odorant. These data reveal that DG GCs may be a part of an

extended network that represents the olfactory world and are

involved in learning the associations between olfactory stimuli

and behaviorally relevant outcomes.

RESULTS

Representations of Olfactory Stimuli in LEC and DG
To determine whether odor information is represented in the DG,

we performed chronic high-resolution, two-photon calcium im-

aging of DG GCs in awake, head-fixed mice (Danielson et al.,

2016). We visualized GC activity by injecting an adeno-associ-

ated virus (AAV) expressing GCaMP6f into the DG and imaged

fields of view (FOVs) within the DG granule cell layer (GCL) (Fig-

ures 1A and 1B; Video S1). To characterize baseline responses

to odorants, mice were imaged during delivery of a panel of

diverse monomolecular odorants (Figure 1A). Olfactory stimuli

evoked robust responses in a fraction of GCs (Figures 1C,
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Figure 2. Odor Responses in LEC

(A) Experimental design. GCaMP6f is expressed in LEC neurons for two-photon microscopy imaging of odor responses in awake-behaving mice.

(B) Standard deviation projection of in vivo two-photon image from a representative LEC FOV. Scale bar: 50 mm.

(C) Odor-evoked neural responses in 9 example LEC neurons, spatial footprints of identified ROIs on left, with denoised calcium traces on right (odor delivery

periods indicated with shading).

(D) Normalized calcium events and cell maps from LEC FOVs. Example cell responses during exposure to a six-odor panel (20 trials). Normalized Ca event

magnitude was generated by dividing each event magnitude by themean event magnitude across the session and averaged across trials. 4-s odor delivery times

are noted below raster, with average responses above trace (mean [black] plus SEM [gray]).

(E) Odor responses are sparse and randomly distributed in the FOV. Spatial footprints shown are from an examplemouse, with modulation index for each cell (see

STAR Methods).
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S1D, S1G, S2B, and S2C) that remained stable across multiple

trials (Figure 1D). As is also the case for odor-evoked responses

in upstream piriform cortex (Roland et al., 2017; Stettler and

Axel, 2009), which innervates LEC (Heale and Vanderwolf,

1994, 1999; Krettek and Price, 1977; Leitner et al., 2016; Room

et al., 1984; Shipley and Adamek, 1984; Vanderwolf, 1992; Wil-

son and Steward, 1978), odor-modulated GCs were distributed

across the FOV without apparent spatial clustering (Figures 1E,

S1F, and S2A). In order to understand how odor information

may be differentially represented in the DG and its upstream

input, LEC, we developed a method for two-photon imaging of

GCaMP6f-expressing LEC neurons in awake, head-fixed mice

(Figure 2B; Video S2). As in DG, a subset of LEC neurons showed

time-locked responses to odor delivery, with no discernable

spatial clustering of modulated cells (Figures 2A–2C, S1E,

S2B, and S2C).

We next sought to compare odor responses in LEC neurons,

DG GCs, and DG GCs in which input from LEC was inhibited. In

our six-odor delivery design, we imaged DG GCs, LEC neurons,

and DG GCs from mice in which we silenced LEC-DG synaptic

transmission bilaterally using tetanus toxin light chain (LEC-DG

TeLC) (see STAR Methods; Figures 3A and S1C). The identity of

presented odorants could be accurately decoded using linear de-

coders (Bishop, 2006) from the population activity of DGGCs and
LEC neurons, but not from LEC-DG TeLC mice (Figures 3B, 3C,

and S2D–S2F; see STAR Methods), suggesting the LEC is the

major source of odor input to the DG. By comparing decoding ac-

curacies in LEC and DG, we found that a decoder trained on DG

GC data could more accurately classify odor identity than one

trained on LEC activities, suggesting that odor identity is more

reliably represented in DG than LEC (Figure 3C). This was true

both in experiments using a six-odor panel and a three-odor panel

(Figures S2D and S2E). We obtained complementary results by

constructing population vectors of DGGCs or LEC activity during

odor presentations andmeasuring trial by trial similarity; we found

responses across odors were less correlated in DG when

compared to LEC (Figures 3E, S2G, and S2H), indicating that

distinct odor representations are decorrelated in DG compared

to LEC and that odor correlations were disrupted in LEC-DG

TeLC mice (Figure 3E). Finally, we constructed a model based

on random connectivity (Schaffer et al., 2018) between LEC and

the target GCs (see STAR Methods) to determine whether this

could recapitulate the high decoding accuracy in DG GCs seen

in our data. The property of random connectivity in the model

maintained correlations in odor representations within the input

structure (LEC) and enabled expansion of the dimensionality of

patterns onto its output structure (DG) via a non-linear transforma-

tion, which in general can be beneficial for decoding (Barak et al.,
Neuron 107, 173–184, July 8, 2020 175
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Figure 3. Neural Representations of Olfactory Stimuli in DG, LEC, and LEC-DG TeLC Mice

(A) Experimental cohorts for imaging DG, LEC, and the DG of LEC-DG TeLC mice (see STAR Methods).

(B) Confusion matrix for decoding of six odors (1, benzaldehyde; 2, eugenol; 3, heptanal; 4, hexanal; 5, pinene; 6, eucalyptol) from LEC neurons, DGGCs, and DG

GCs from LEC-DG TeLC mice.

(C) Quantification of odor decoding accuracies. Odor decoding accuracy was significantly better in DG GCs than LEC neurons, and decoding accuracy was

significantly reduced in LEC-DG TeLCDGGCs (linear support-vector machine [SVM] classifier with matched number of cells in DG, LEC, and LEC-DG TeLCmice

n = 189 cells [n-matched] from 8 DG, 7 LEC, and 3 LEC-DG TeLC mice; Mann-Whitney U test; **p < 0.01).

(D) Trial-by-trial similarity matrix for same six odors as in (B) from recordings of LEC neurons, DG GCs, and DG GCs from LEC-DG TeLC mice.

(E) Quantification of Pearson correlation coefficients revealed lower across odor correlations in DG GCs as compared to LEC neurons.

No significant difference was found between, within, and across odor correlations in DG GCs from LEC-DG TeLC mice; n = 8 DG, 7 LEC, and 3 LEC-DG TeLC

mice; t test; *p < 0.05; **p < 0.01. Error bars represent ± SEM. For exact p values, see Table S1.
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2013). However, randomconnectivity alone, at all testedDGspar-

sity levels in our model, was not sufficient to obtain the high

decoding performance we observed in our DG recordings, using

either the six-odor panel or the three-odor panel (Figures S2G and

S2H). These data suggest that LEC input to DG is required for

odor classification and that local circuit operations within the

DG itself may enhance odor representations rather than arising

solely from random connectivity between LEC and DG.

Odor Classification Accuracy in the DG Is Related to
Behavioral Discrimination in anOdor-GuidedContextual
Memory Task
We next asked whether odor coding in the DG was related to the

discrimination of odors when used as cues for contextual recall.

In DG-dependent contextual fear discrimination/generalization

experiments, a main cue used to distinguish contexts is the

ambient odor cue present in each context (Danielson et al.,

2016; McHugh et al., 2007; Sahay et al., 2011). We thus asked

whether the accuracy of odor classification in the DGwas related

to use of these cues for contextual recall. To test this, we devel-
176 Neuron 107, 173–184, July 8, 2020
oped an odor-guided contextual fear memory task where mice

discriminated contexts that differed in the ambient odor present.

We used two chemically similar odorants, ethyl butyrate (EB) and

methyl butyrate (MB), and one distinct odorant, isoamyl acetate

(IAA). On day 1, mice explored the three contexts in order to

assess baseline levels of freezing. The next day, mice received

mild footshocks in a novel context (context d) infused with the

MB odor from context b and, finally on day 3, were re-exposed

to the three pre-training contexts and tested for freezing in three

contexts (Figure 4A). Compared to control mice, LEC-DG TeLC

mice showed lower levels of freezing in the context infused

with the odor present during conditioning and did not differ in

freezing levels across contexts (Figure 4A). This suggests that

LEC-DG TeLC mice did not use the odor as a cue for memory

recall of the conditioned context. This was consistent with a

role for the DG in context encoding and for the LEC in integrating

contextual representations with non-spatial stimulus represen-

tations (Basu et al., 2016; Danielson et al., 2016; Hargreaves

et al., 2005; Kheirbek et al., 2013; Knierim et al., 2013; McHugh

et al., 2007; Wilson et al., 2013).
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Figure 4. Odor Classification in the DG, but Not LEC, Correlates

with Discrimination of Odors for Contextual Recall

(A) LEC-DG TeLC and control mice were pre-exposed to three contexts

that differed in the infused odor (context a, ethyl butyrate; b, methyl buty-

rate; c, isoamyl acetate) to assess pre-conditioning freezing (see Fig-

ure S2). The next day, mice were given foot shocks in a novel context

infused with the odor from context b (methyl butyrate). 24 h later, mice were

re-exposed to contexts a–c and freezing was measured. Right: LEC-DG

TeLC showed reduced freezing in the context infused with the odor from

the conditioning context (n = 8 LEC-DG TeLC; 7 control; repeated-mea-

sures ANOVA with post hoc t test with Holm-Sidak correction; **p < 0.01)

Error bars represent ± SEM.

(B) Experimental design for imaging. Design was identical as in (A), except

that mice were imaged on pre-conditioning and post-conditioning days.

Error bars represent ± SEM.

(C) Percent freezing in the DG imaging mice three contexts post-condi-

tioning (n = 7 DG mice; t test with Holm-Sidak correction; *p < 0.05). Error

bars represent ± SEM.

(D) A context fear discrimination index (context a versus context b) was

calculated based on freezing scores for each animal and plotted against

the decoding accuracy obtained from 2P imaging pre-conditioning (Pear-

son’s correlation; r = 0.95; n = 7 mice; linear fit with solid line; 95% confi-

dence interval in dashed lines; p < 0.001; error bars represent ± SEM for 30

cross validations of the decoder; see STAR Methods).

(E) Percent freezing in the LEC imaging mice in the three contexts post-

conditioning (n = 7 LEC mice t test with Holm-Sidak correction; *p < 0.05).

(F) Context discrimination indices (context a versus context b) plotted

against the decoding accuracies obtained from LEC imaging pre-condi-

tioning. Pearson’s correlation; r =�0.24; n = 7 mice; linear fit with solid line;

95% confidence interval in dashed lines; p = 0.3.

Error bars represent ± SEM for 30 cross validations of the decoder (see

STAR Methods). For exact p values, see Table S1.
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Figure 5. Associative Learning Amplifies Cortical Representations of Salient Stimuli in DG GCs

(A) Experimental schematic for associative odor conditioning. A sucrose reward was delivered on CS+ trials.

(B) Lick rasters showing behavioral performance on day 1 (pre) and day 3 (post) of learning.

(C) Average lick rates during the odor and trace period on day 1 (pre) and day 3 (post; Mann-Whitney U test; **p < 0.01; n = 3 DG mice).

(legend continued on next page)
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As the odor present was likely the primary cue that elicited

recall of the conditioning context, we asked whether odor

decoding accuracy in DG or LEC was related to contextual

discrimination post-conditioning. For this, we ran mice in the

same protocol, except that we imaged odor responses before

(pre) and after (post) conditioning with the footshock. Analysis

of context discrimination scores after conditioning revealed

considerable individual variability in discrimination of contexts

a and b post-conditioning (but not b/c; see Figure S3B), due

to the chemical similarity of the EB and MB odorants, as

some mice generalized their fear across contexts, although

others discriminated (Figures 4C–4E and S3B), similar to that

seen in auditory fear discrimination (Likhtik et al., 2014). We

thus asked whether behavioral discrimination was correlated

with odor classification in the DG and LEC. We computed pair-

wise context discrimination scores on day 3 (see STAR

Methods) to compare to odor decoding accuracy scores. In

DG GC recordings, odor decoding accuracy for the similar a/b

pair (EB/MB) of odorants before conditioning correlated with

context a/b discrimination scores after conditioning, as the

mice with lower decoding accuracy scores before conditioning

generalized their freezing responses and the mice with the high-

est neural decoding scores went on to become the best behav-

ioral discriminators (Figure 4D). A similar relationship between

neuronal and behavioral discrimination was found when

analyzing decoding scores after conditioning or when using

similarity of population vectors as a neural readout of discrimi-

nation (Figures S3F and S3K). This relationship was only found

for the similar a/b (EB/MB) odor pair, in which mice showed in-

dividual differences in the level of freezing in the contexts in

which these odors were present, as mice were significantly bet-

ter as a group at behaviorally discriminating the contexts where

the distinct odors a/c (EB/IAA) were present. (Figures S3B, S3H,

and S3I). This relationship between odor decoding accuracy

and contextual discrimination was not seen in mice where re-

cordings were taken from LEC neurons. Although LEC mice

showed similar individual variability in the ability to behaviorally

discriminate the a/b contexts (Figures 4E and S3B), this did not

correlate with neural decoding accuracy scores from LEC

before conditioning (Figure 4F). These results show for the first

time that the neural discrimination of odor cues in the DG, but
(D) Cell registration across days in the same FOV. Circled cells are examples

approach).

(E) Example rasters and normalized activity for cross registered, odor responsive

(F andG) In theDG (F), odor overlaps for CS+/CS� odors fall to levels comparable t

stable across learning (level of significance for 10,000 shufflings **p < 0.01; *p <

(H–J) Comparison of proportion of active cells during odor presentation in pre and

represents the proportion of odor trials in which we found a given percentage of ac

CS+ odor and decreased for the CS� odor in DG (H), but not in LEC (I), and increas

DG mice; n = 3 LEC mice; n = 2 LEC-DG mice).

(K) Odor responses in post for cross-session registered cells. Cells were classifie

Compared to LEC neurons, odor a responsive DGGCs were more likely to becom

LEC mice, 182 cells; X2 test; p < 0.01).

(L) Lifetime sparsity increases in DG, but not LEC, across learning (Mann-Whitne

(M) Odor decoding accuracy improved across learning in both DG and LEC, but no

LEC mice; 2 LEC-DG mice).

(N) Across-session odor decoding accuracy (training on pre data and testing on

stability in representations within LEC across learning (n = 3 pre group; Mann-W

Error bars represent ± SEM. For exact p values, see Table S1.
not LEC, is correlated with the use of these cues to drive

discrimination between contexts.

Changes in Odor Representations in DG and LEC with
Reward Learning
Next, we asked how odor representations in DG GCs and LEC

change during associative reward learning. We trained mice in

an appetitive conditioning task using the same three odors that

were used in our context fear discrimination experiment. Odors

were delivered for 4 s and then a sucrose reward (unconditioned

stimulus [US]) was delivered after a 2-s trace period after presen-

tation of one of the odorants (conditioned stimulus [CS+], odor b;

Figure 5A).We assessed learning bymeasuring licking during the

CS odor/trace period (Figures 5B, 5C, and S4A) and recorded

calcium dynamics in DG GCs, LEC neurons, and DG GCs with

silenced input from LEC (LEC-DG TeLC mice; as in Figures 3

and 4). Unlike in fear conditioning, where aversive reinforcement

is known to drive stimulus generalization (Fletcher and Wilson,

2002; Ghosh and Chattarji, 2015; Likhtik et al., 2014; Pavesi

et al., 2012; Resnik and Paz, 2015), mice did not generalize the

odor a/b pair, as all mice discriminated by day 3 (Figures 5B,

5C, S5A, and S5B). The same cells in LEC and DG were imaged

before learning (pre; day 1) and after odor learning (post; day 3;

Figures 5D, 5E, and S4B). First, we found that, before learning,

both in DG and LEC, neurons that responded to one odor also

tended to respond to another odorant. However, after learning,

DGGCs, but not LEC neurons, were less likely to respond tomul-

tiple odorants, reducing overlapping odor representations (Fig-

ures 5F, 5G, S4C, and S4D). In LEC-DG TeLCmice, in this exper-

iment, we did not find cells that reached the statistical

significance cutoff for odor responsivity, again supporting the

role of this input in olfactory coding in the DG. In addition to

reducing overlap, we found an increase in the proportion of DG

GCs that were active during CS+ odor and a decrease in the

number active during the CS� (odor a; Figures 5H and S4E).

This again was not observed in LEC neurons (Figure 5I). In

LEC-DG TeLC mice, an increase in proportion of active cells

was seen indiscriminately during both CS+ and CS� odors (Fig-

ure 5J). In line with our results in the DG and LEC, by limiting our

analysis to those cells that responded to each odor on day 1

(pre), we found that CS� responsive DG GCs were more likely
of registered neurons (see STAR Methods and Figure S5 for cell registration

DG (left) and LEC (right) cells.

o the shuffled distribution after learning, but in LEC (G), neurons overlaps remain

0.05; n = 359 DG cells; n = 182 LEC cells).

post (pseudo-simultaneous recordings across multiple FOVs, where each bin

tive cells). Proportion active is significantly increased in the post session for the

ed to both CS+ and CS� odors in (J) LEC-DG TeLCmice (t test; **p < 0.01; n = 3

d as odor responsive in pre and then their responses were determined in post.

e responsive to odor b (CS+ odor) after learning. (n = 3 DGmice, 359 cells; n = 3

y; p < 0.01; n = 3 DG mice; n = 3 LEC mice).

t LEC-DG TeLCmice (Mann-Whitney; **p < 0.01; *p < 0.05; n = 3DGmice; n = 3

post data) was significantly higher in LEC compared to DG, indicating greater

hitney; **p < 0.01).
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than LEC neurons to switch their response to the CS+ odor after

learning (Figure 5K). In analysis of populations of DG GCs and

LEC neurons, we found that, with learning, odor representations

became sparser in the DG, but not LEC (Figure 5L). In addition,

odor classification performance prominently increased in the

DG, with a more modest increase in LEC (Figure 5M). This again

was not seen in LEC-DG TeLC mice, as although these mice

could learn this simple association (Figure S4B), odor decoding

accuracy in the DG was poor both before and after learning (Fig-

ure 5M). Finally, a cross-session decoder performed significantly

worse in DG than in LEC (Figure 5N), indicating that the geometry

of the population code for odor stimuli in the DG dynamically

changes with associative learning. These differential changes

in DG and LEC during learning were not due to differences in

signal to noise in recordings or differences in lick-related, breath-

ing-related, or reward-related activity between the DG and LEC

(Figures S4I–S4L). In addition, increasing the numbers of CS+

and CS� odors generated a similar pattern of results in DG GC

recordings, as odor decoding accuracy increased with learning

(Figure S4H). Finally, we recorded DGGCs during extinction ses-

sion, where reward was not delivered, and found that odor de-

coding accuracy was reduced as compared to the post-learning

session, raising the intriguing possibility that learning generates

new, odor-reward representations in the DG (Figure S4H). Taken

together, these results suggest that, during associative learning,

LEC provides relatively stable odor representations to DG,where

these representations change or generate new odor-reward rep-

resentations to amplify the contrast between a CS+ odorant and

a CS� odorant.

DISCUSSION

Here, we have used measures of olfactory coding to show how

the DG transforms external sensory stimuli into internal neural

representations. We demonstrate that DG GCs effectively

encode odor stimulus identities, and this process is correlated

with future contextual discrimination. We find that inhibition of

input from the LEC impairs odor coding in DG GCs and the use

of odor cues to guide contextual recall. By recording in both

DG and LEC, we find that odor identity could be more accurately

classified from DG GCs than from LEC neurons. In addition, we

found that, during olfactory learning, odor representations were

more flexible in DG than in LEC. Odor representations dynami-

cally changed in DG, with odor learning inducing an increase in

the proportion of cells responding to the CS+ odorant and a

decrease in those responding to the CS� odorant. This process

of expanding the distance in representations with learning may

serve as a substrate for memory formation within the DG and

downstream HPC regions.

These findings expand upon recent work describing odor rep-

resentations in upstream areas, such as piriform cortex and olfac-

tory bulb (Bolding and Franks, 2017, 2018; Franks et al., 2011; Iur-

illi and Datta, 2017; Sosulski et al., 2011; Stettler and Axel, 2009)

and studies reporting non-spatial representations in downstream

CA1 (Aronov et al., 2017; Hargreaves et al., 2005; Igarashi et al.,

2014; McKenzie et al., 2016). Our studies support the hypothesis

that every stage of processing along the OB to HPC stream ap-

plies some degree of pattern separation to decorrelate odor rep-
180 Neuron 107, 173–184, July 8, 2020
resentations.We find that across odor correlations in DGand LEC

are very low, and in some trials, correlations are less than zero,

indicating that the LEC-DG circuit strongly separates different

odor representations to a greater degree than previously found

in OB and piriform cortex (Roland et al., 2017; Schaffer et al.,

2018). In addition, we report key differences between odor repre-

sentations in the DG and those in its primary input region, LEC.

Although previous studies in anesthetized mice showed odor-

evoked responses in LEC neurons (Leitner et al., 2016), it re-

mained unclear how these responses differ from DG and how

they changed with learning. By recording activity in both LEC

and DG using a tightly controlled odor-based experimental para-

digm, weobserved that odor decoding accuracywas better in DG

GCs when compared to LEC neurons, which is in line with previ-

ous studies proposing a role of DG GCs for an expansion of

dimensionality through sparsity (Rolls and Treves, 1998). Howev-

er, we also found that a model of LEC-DG based on random pro-

jections alone was not sufficient to obtain comparable levels of

decoding as true DG data. Exploration of other models with

random projections that introduce additional non-linearities or

ones that incorporate a rich heterogeneity of cell types and plas-

ticity functions (Litwin-Kumar et al., 2017) may more accurately

model the expansion of dimensionality and facilitation of associa-

tive learning we observe in the DG.

Using an odor-guided contextual fear memory task, we found

that, in DG, but not LEC, odor decoding accuracy scores corre-

lated with individual animals’ discrimination between contexts

that differed in the presented odorant. Mice with the highest

odor classification accuracies showed the best discrimination

during context recall. In this task, mice use the odor cue for

pattern completion: rapid recall of a full contextual representa-

tion from the partial cue. Recent studies have highlighted the

role of mature DG GCs in pattern-completion-mediated contex-

tual recall (Nakashiba et al., 2012), and our work suggests that

LEC-DG input facilitates the use of olfactory information in this

process. We found that silencing LEC-DG transmission with

TeLC impaired use of the odor cues in a different context to recall

the conditioning context, in line with a role for the LEC recog-

nizing non-spatial stimuli that have been experienced in a spe-

cific context (Wilson et al., 2013). Although the mechanism for

this remains unclear, it may be the case that odor information

is separated at the level of the DG and can drive distinct recurrent

networks in CA3 to facilitate recall (McNaughton and Morris,

1987; Nakazawa et al., 2002). Thus, in a situation where odors

are better separated in the DG, conditioning can drive a distinct

CA3 recurrent network state that supports high-fidelity recall and

thus effective context discrimination (O’Reilly and McClelland,

1994; Treves and Rolls, 1994). This may explain why odor de-

coding accuracies in LEC did not correlate with behavioral

discrimination, as the added level of separation provided by

the DG may be required for fine-tuning CA3 networks. However,

future population level imaging studies in CA3 and in LEC-DG

projection neurons in odor-guided contextual memory tasks

that vary the balance between pattern completion and separa-

tion will lend further insight into this process. Silencing LEC-

DG transmission, although impairing learning-induced changes

in population activity in the DG, did not worsen odor-reward

learning in the multi-trial, head-fixed task used here. This would
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indicate that either the chronic nature of our silencing leads to

compensation by other circuits or that other brain areas or neural

circuits are sufficient to perform this kind of associative learning

task (Abraham et al., 2012; Boisselier et al., 2014; Gschwend

et al., 2015; Han et al., 2018; Igarashi et al., 2014; Komiyama

et al., 2010; Lepousez and Lledo, 2013; Li et al., 2017, 2018;

Liu et al., 2014; Otazu et al., 2015; Zhu et al., 2018). Use of

more temporally precise silencing methods, or more complex

behavioral designs, may provide new evidence for the role of

LEC-DG in pure odor-reward associations.

We found that CS+-specific changes that occur in DG during

associative learning are less prominent in LEC. The strengthening

we observe in neural representations through learning may serve

as a substrate for memory formation within the DG and down-

stream HPC regions. This phenomenon appears as an experi-

ence-dependent reduction of dimensionality in DG because the

CS+ odor becomes over represented at the expense of the CS�

odor and odor representations become minimally overlapping,

i.e., orthogonal. We did not observe similar changes in LEC, in

line with other studies that describe cortical activities as a high-

dimensional computational substrate that is useful to flexibly learn

new tasks (Fusi et al., 2016; Rigotti et al., 2013). An alternative

interpretation may be that, with learning, the DG may generate

new odor-reward representations. Studies aimed at manipulating

CS-US contingencies and recording LEC and DG population re-

sponses will shed light on these different scenarios. Taken

together, our experiments have potentially identified a location

in a cortex-to-HPC circuit where information is transformed into

a format that is potentially behaviorally relevant to the animal.

The odor code in the DG becomes more explicit, i.e., by orthog-

onalizing odor representations, perhaps to allow for easier recall

by downstream areas, such as CA3 and CA1, to guide behavior.

This may be via plasticity mechanisms at perforant path synap-

ses, neuromodulatory effects on the excitability of DG GCs, or

enhancement of local microcircuit function (such as recruitment

of adult-generated GCs or local inhibitory/excitatory circuits) to

optimize sparsity levels for classification (Drew et al., 2016;

Luna et al., 2019). Experiments identifying how any or all of these

processes facilitate learning will provide new insight into the ways

in which the DG actively classifies odor representation as a

consequence of appetitive conditioning. Identification of this pro-

cess of separating cortical representations of sensory stimuli with

learning may represent a novel population-level substrate for

associative learning.

Recent work has shown that place cell responses within GCs

are stable over days and do not remap in response to global

contextual changes (Hainmueller and Bartos, 2018). Thus,

although overall spatial maps in the DG remain stable over

time, representations of discrete elements of the environment,

such as the odorant cues used here, may change with learning,

providing downstream areas updated information on the sa-

liency of non-spatial stimuli in the environment. This may reflect

differences in the response properties of DG GCs to complex

spatial contexts as opposed to specific discrete cues, which

may arise from the distinct input pathways to the DG that are

activated by spatial versus non-spatial information, with spatially

tuned DG GCs relying on medial entorhinal inputs and odor-

responsive GCs relying on LEC inputs (Hafting et al., 2005; Har-
greaves et al., 2005). In addition, recent work indicates that

newly integrated GCs preferentially receive LEC inputs (Vivar

et al., 2012; Woods et al., 2018), and this LEC-DG input was

recently shown to directly increase the inhibition of mature

GCs via adult-born GC activity (Luna et al., 2019), effectively

enhancing the sparsity of activation in the DG. Thus, discrete

stimuli that recruit LEC over medial entorhinal cortex (MEC) ac-

tivity may distinctly modulate the activity of downstream mature

GCs or selectively drive the highly plastic population of newly in-

tegrated GCs (Schmidt-Hieber et al., 2004).

Our findings offer insight to the population level and single-cell

encoding properties of the healthy DG, and future studies can

leverage these tools to understand how the DG becomes

dysfunctional in diseases such as Alzheimer’s disease.

The earliest aggregation of amyloid-beta plaques in Alzheimer’s

disease occurs specifically in lateral entorhinal cortex, and hypo-

metabolic-associated cognitive impairment has been localized

to the LEC-DG circuit in mouse models and human subjects

(Braak and Braak, 1991; Khan et al., 2014). As the loss of sense

of smell has been identified as a potent risk factor for develop-

ment of Alzheimer’s disease (Conti et al., 2013; Lafaille-Magnan

et al., 2017; Morgan et al., 1995; Vassilaki et al., 2017), it will be of

interest to explore how LEC-DG olfactory coding circuits are

impacted in early stages of disease progression in mouse

models. Taken together, our results suggest that olfactory cod-

ing may represent a novel proxy to study memory formation in

the hippocampus in health and in disease.
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AAVdj-CamKIIa-GCaMP 6f Stanford Vector Core Cat# GVVC-AAV-90
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jvl.htm

Experimental Models: Organisms/Strains

C57BL/6J mice Jackson Laboratory Cat#000664; RRID:SCR_004633; http://

www.jax.org/

Software and Algorithms

MATLAB Mathworks https://www.mathworks.com/products/

matlab.html; RRID:SCR_001622

CNMF-E Zhou et al., 2018 https://github.com/zhoupc/CNMF_E

FreezeFrame Coulbourn Instruments Cat#ACT-100A; RRID:SCR_014429;

https://www.actimetrics.com/products/

freezeframe/

Prism 8 GraphPad https://www.graphpad.com/scientific-

software/prism/

Illustrator Adobe https://www.adobe.com/products/

illustrator.html; RRID:SCR_010279

Scikit-learn (Python) Pedregosa et al., 2011 https://scikit-learn.org
RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be

fulfilled by the Lead Contact, Mazen Kheirbek (Mazen.Kheirbek@ucsf.edu).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
The datasets and analysis code supporting the current study are available from the lead contact on request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
All procedures were conducted in accordance with the U.S. NIH Guide for the Care and Use of Laboratory Animals and the institu-

tional Animal Care and Use Committees at UCSF. Adult male C57BL/6J mice were supplied by Jackson Laboratory and were used

beginning at 8-12weeks of age.Micewere co-housedwith litter mates (2-5 per cage). Miceweremaintainedwith unrestricted access

to food and water on a 12-hour light/dark cycle and experiments were conducted during the dark cycle portion.

Viral Constructs
For calcium imaging, AAVdj-CaMKII-GCaMP6f-WPRE-SV40 was packaged and supplied by Stanford Viral Vector Core at titer of

2.05 X 10^13 vg/ml. For tetanus toxin experiments, AAV-EF1a-DIO-TeLC-mCherry and AAV-EF1a-DIO-mCherry plasmids (Boeh-

ringer et al., 2017) were generously provided by Dr. Thomas McHugh (RIKEN) and packaged into AAVdj at Stanford Vector Core

at a titer of 1.92 X 10^12 vg/ml and 6.34 3 10^12 vg/ml, respectively. AAV2retro-CAG-Cre was packaged and supplied by UNC

Vector Core and injected at a titer of 2.8 3 10^12 vg/ml.
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METHOD DETAILS

Surgery
Animals were 8-12 weeks of age at time of initial viral injection surgery. Mice were anesthetized with 1.5% isoflurane with an oxygen

flow rate of �1 L / min, and head-fixed in a stereotactic frame (David Kopf, Tujunga, CA). Eyes were lubricated with an ophthalmic

ointment, and body temperature was maintained at 34-37�C with a warm water re-circulator (Stryker, Kalamazoo, MI). Fur was

shaved and incision site sterilized with isopropyl alcohol three times and betadine solution three times prior to beginning surgical

procedures. Lidocaine HCl 2% solution was injected subcutaneously local to incision, and post-surgical analgesia was provided

by meloxicam and slow-release buprenorphine. For calcium imaging experiments, viral injections preceded lens implantation by

2-3 weeks to allow viral expression. For stereotactic viral injections, a craniotomy was made at injection site with a round 0.5 mm

drill bit (David Kopf, Tujunga, CA). A nanoject syringe (Drummond Scientific, Broomall, PA) was used with a pulled glass pipette

(tip width 20-30 microns) to inject a total of 483 nL of AAVdj-CaMKII-GCaMP6f-WPRE-SV40 into the dorsal dentate gyrus at coor-

dinates of AP �2.15, ML ± 1.25, DV �2.3, �2.15, �2.05, all relative to bregma (Paxinos and Franklin’s, 4th edition). At each dorsal-

ventral site of the dentate gyrus, 53 32.2nl pulses were delivered separated by 10 s. The needle was held in place for 5 minutes prior

to moving to the next D/V coordinate, and remained in place for 10minutes following the final injection before being slowly withdrawn

from the brain. For injections into lateral entorhinal cortex, the following coordinates were used: AP �3.6, ML ± 4.4 (AP and ML co-

ordinates frombregma), DV�2.6 (frommedial brain surface at craniotomy site). For LEC-DG TeLC experiments, AAV2retro-CAG-Cre

and AAV-EF1a-DIO-TeLC-mCherry/AAV-EF1a-DIO-mCherry were injected bilaterally into the DG and LEC respectively at the same

volume as GCaMP injections.

We modified a previously published procedure for imaging DG GCs, which has been shown to preserve DG structure, activity and

DG-dependent behaviors (Danielson et al., 2016). Lens implantation surgery occurred 2-3 weeks following GCaMP6f virus injection.

30 minutes prior to anesthesia, dexamethasone was injected subcutaneously (0.2mg/kg dissolved in sterile saline). The animal was

prepared on the stereotax asmentioned above. After making a longitudinal midline incision exposing the upper extent of the cranium,

a no. 15 scalpel blade was used to scrape periosteum from the skull surface, as well as most superficial (�0.5mm) of posterior neck

muscles attaching to the dorsal portion of the caudal skull surface. The skull surface was wiped with hydrogen peroxide for 15 s to

further remove residual periosteum, then rinsed 3x with saline. Finally, the skull was lightly scored with a scalpel blade in a cross-

hatched pattern to increase surface area contact for dental acrylic. A craniotomy approximating 1.1 mm in diameter was drilled

by hand with a rounded drill bit centered on the same AP (�2.15) and ML (�1.25) coordinates as the GCaMP injection for DG. For

LEC, the craniotomy was made at AP (�3.6) and ML (�4.4). Dura was removed with a fish-hooked 27 gauge needle, and a 30 gauge

blunt end needle was used to aspirate neural tissue superficial of the dentate gyrus or lateral entorhinal cortex. For DG surgeries, the

hippocampal fissure surface was used to determine proper aspiration depth. For LEC implantation, 1mm of cortex was aspirated

above implant location, estimated by marked depth on aspiration needle. The cranial cavity was filled with saline and collagen he-

mostat (Avitene) for 10 mins or until bleeding ceased when collagen plug was removed. The cavity was re-filled with saline,

and a 1mm wide x 4.1mm long ProView GRIN lens (GLP-1042, Inscopix, Palo Alto, CA) was stereotactically implanted

(AP �2.15, ML �1.25, DV �1.95) above the dentate gyrus,or LEC (AP �3.6, ML �4.4, DV �2 from skull surface at craniotomy). A

miniaturized microscope (Inscopix) was used for visual guidance and fluorescence monitoring, and once placed, the lens was fixed

to the skull with Metabond adhesive cement (Parkell, Edgewood, NY). The lens was lowered with an electronically controlled stereo-

tax arm attachment (Scientifica, Uckfield, UK), and lowered at a rate of 0.2 mm per min until target depth was reached. Final depth

was adjusted within 0.1 mm of target depth based uponmaximizing the quality of the visualized fluorescence signal. Animals without

fluorescence visible thru the miniscope were not used and lenses were retrieved. A custom-made titanium headbar was then

attached to the skull using dental cement (Dentsply Sinora, Philadelphia, PA). Finally, a protective cap over the lens was applied

with Kwik-Sil silicone elastomer (World Precision Instruments, Sarasota, Fl), which was removed and re-applied for each imaging

session. Mice were allowed to recover from lens implant surgery for at least 2 weeks prior to imaging experiments.

Post-mortem verification of imaging sites and histological analysis
DG and LEC imaging sites were verified in each animal included in final analysis (Figure S1). After imaging, mice were perfused trans-

cardially with PBS followed by 4%PFA (both�20mL at a rate of 7-8ml per min). Entire mouse heads were placed in 4%PFA solution

for 2-3 days to allow ample fixation of the area around the lens, allowing for dissection with the lens indent intact. Serial coronal sec-

tions (50 microns) around the lens site were collected and visualized and cross-registered with a mouse brain atlas.

For LEC-DG TeLC silencing experiments, animals were perfused as noted above, and a 1-in-6 series of coronal sections (50

microns) were collected. TeLC-mCherry expressing cell counts in the lateral entorhinal cortex were assessed for each mouse by

identifying the section nearest to the targeted stereotactic injection (AP �3.6) site based on cross-registering with the Allen Brain

Atlas, then counting the mCherry positive cells within the lateral entorhinal cortex to establish a total cell count for each animal,

normalized by tissue area. An average count per mouse is provided and each mouse was verified for mCherry expression delimited

to LEC cells projecting to DG (and not CA1) by visualizing mCherry positive terminals within the outer molecular layer of the dentate

gyrus (Figure S1).
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Odor-guided contextual fear memory task
Mice were run through a three day odor-guided contextual fear memory paradigm, where on day 1 mice were exposed to 3 contexts

(Pre-conditioning), day 2 were conditioned in a different context (Conditioning), and day 3 tested in the same 3 contexts as day 1

(Post-conditioning). In imaging experiments, on Pre-conditioning and Post-conditioning days, mice were exposed to the contexts

in the AM, then imaged with 2-photon microscopy in the PM (three hours after last context exposure). On day 1 and 3 (Pre-condi-

tioning and Post-conditioning), mice were placed in a standard fear conditioning box (MedAssociates, Fairfax VT) with the following

contextual cues: acrylic floor and rounded walls, floor with alpha-dry bedding, lights off, fan off, and ambient white noise at 60 dB.

Each pre-conditioning and post-conditioning context differed in the presence of the odors, one of 3 odors was present below the grid

floor (odor a: ethyl butyrate, odor b: methyl butyrate, odor c: isoamyl acetate). Odors were applied directly to a clean cotton tip appli-

cator for a few seconds until saturated, and placed under grating 1-2minutes prior to an animals’ entry into the conditioning box. One

hour separated each context exposure, and odorant was cleared from roomwith a charcoal vacuum filter, and order of exposure was

randomized among mice. For pre and post conditioning, mice were allowed to explore the context for 5 mins before removal, and

percent freezing was evaluated. On conditioning day, the mice were placed in the fear conditioning boxes with odor b (methyl buty-

rate) present, and the following contextual cues: (conditioning context (context d): bare metal grating floor, squared walls, lights on,

fan on, room lights on). Mice were allowed to explore the context for 3 minutes prior to receiving three footshocks 60 s apart (2 s,

0.7mA). After the final shock, mice were immediately removed from the shock box. Behavioral freezing data was collected and

analyzed using FreezeFrame video software (Actimetrics) with a freezing epoch threshold of 1 s, and automatic movement signal

detection. Freezing percentages represent the entire 5 minutes of re-exposure and were performed with the experimenter blind to

odor or experimental group. Context discrimination index for any context pair was calculated as (percent time freezing to context

1- percent time freezing to context 2)/(percent time freezing to context 1+ percent time freezing to context 2).

Head-fixed odor delivery
Animals were handled and habituated to the experimenter, training environment and head-fixation setup for 30mins a day for at least

two days before imaging experiments were ran. On imaging days, monomolecular odors were delivered through a custom built 6

channel olfactometer equipped with a mass flow controller (Alicat Scientific, Tucson, AZ) that monitored and maintained air flow

at 2 l per min and preventedmomentary pressure changes from solenoid valve switches upstream of the controller. The olfactometer

solenoids were triggered by an Arduino Mega with custom circuit boards (http://OpenMaze.org), and stimulus delivery recorded via

CoolTerm software. One side of the nose cone had a tubing insert that delivered odors, the other side containing an outlet in which a

gentle vacuum was applied to evacuate residual odor. Additionally, an ongoing charcoal filter vacuum system (Hydrobuilders Inc.)

was placed in the 2P isolation box to evacuate odors that leaked out of the nosecone apparatus. For all experiments, micewere habit-

uated to the 2p head fixed setup for 10 mins prior to imaging, and imaged for 30 s at baseline before a structured trial of odors were

delivered for 4 s with a 16 s ITI, presented in pseudo-randomized fashion. For 6 odor experiments, 20 trials were performed for each

odor for a total continuous imaging session of�30 mins. For 3 odor experiments, 30 presentations of each odor were performed in a

session (�30mins). Several different odor panels were run on cohorts of imaged animals. For a 6 neutral odor panel (Figures 1, 2, and

3), we used: benzaldehyde (BA), eugenol (EU), heptanal (HEP), hexanal (HEX), alpha-pinene (PIN), and eucalyptol (EUC). For a 3 odor

panel testing odor discrimination and learning (Figures 4 and 5) we usedmethyl butyrate (MB) ethyl butyrate (EB) and isoamyl acetate

(IAA). For mixed tone/odor experiments (Figure S1), mice were given 3 tones at 4, 9 and 10Khz, 4 s each with 16 s ITI presented in a

pseudorandom order, 30 presentations each, identical in trial design to the 3 odor experiment. Following tone trials (in the same

session), the same FOV was recorded for 3 odor responses as above (EB, MB, IAA) so that we could directly compare overlapping

tone/odor responses within the same population of neurons. For 4 odor associative learning experiments, we used: limonene, benz-

aldehyde, eugenol, and isoamyl acetate. For all associative or fear learning experiments, separate cohorts of mice were used.

2-photon imaging
2-photon imaging of the DG was performed using an Ultima IV laser scanning microscope (Bruker Nano, Middleton, WI) equipped

with an 8Khz resonance galvanometer and high speed optics set, dual GaAsP PMTs (Hamamatsu model 7422PA-40), andmotorized

z focus (100nm step size). Approximately 30-90 mW of laser power (at 920nm, fromMaiTai DeepSee mode-locked Ti:Sapphire laser

source (Spectra-Physics, Irvine, CA)) was used during imaging, with adjustments in power levels to accommodate varying window

clarity. Once a given power level was established for an animal, identical power was used across experiments to increase reliability in

fluorescence detection across sessions. To optimize light transmission, we adjusted the angle of the mouse’s head using two goni-

ometers in the anterior-posterior and medial-lateral axis (Edmund Optics, +/�10 degree range) such that the GRIN lens was parallel

to the objective. After focusing on the lens surface, optical viewing was switched to live view thru the 2-photon laser, and an FOVwas

located bymoving the objective between�50-300microns upward. FOVs were chosen in the GCL, avoiding those FOVs where hilus

was visible as previously shown (Danielson et al., 2016). Once an FOVwas set for a given animal, each imaging session wasmanually

aligned to approximate the same FOV across sessions. All images were acquired with a Nikon 20X NIR long working distance objec-

tive (0.45 NA, 8.3 mm WD). GCaMP6f signal was filtered through an ET-GFP (FITC/CY2) filter set. Acquisition speed was 30Hz for

512 3 512 pixel images. Images were averaged online for every 8 frames, yielding a final acquisition rate of 3.7 frames per second.
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Appetitive Odor Conditioning
For the appetitive odor conditioning task, water-deprived mice were first habituated to the 2P setup with lick spout. Mice were given

50ul 10% sucrose by volume reward 100x (reward following regular intervals every 15 trials) for 3 days, or until mice successfully

licked for reward < 1,000 times in under 10 minutes of head-fixation. After mice exhibited sufficient lick training, water-deprived

mice were imaged under pseudorandom presentation of a three neutral odor panel, EB, MB, IAA (see above), with a 2 s trace delay

followed by 50ms reward delivery window following each MB (odor b, CS+) trial (in order to isolate odor responses distinct from

reward delivery), simultaneously with 2-photon imaging, and a variable ITI of 12-16 s. Reward was delivered regardless of whether

the animal licked during odor b (CS+,MB) trials, and no punishment or time outswere administered if mice licked during theCS- trials.

Mice were run once a day for 3 days through this task. All mice used in this study showed highly accurate licking to the CS+ odor by

the 3rd day as analyzed by lick rates to the odor/trace period. Respiration was monitored using a Honeywell Airflow Sensor

(AWM3300V). In the 4 odor task, mice were run in the same manner as above, but with 2 odors acting as the CS+, and 2 odors

as the CS-. Separate cohorts of mice were run in either the 3 odor or 4 odor associative learning experiment. As with the 3 odor asso-

ciative learning task, a total of 30 odor trials were delivered in pseudorandom order with a 4 s odor delivery period, 2 s trace, and 50ms

reward window for two CS+ odors, followed by variable ITI between 12-16 s. The odorant identities of CS+ or CS- were randomly

assigned for each mouse. Odorants used were: limonene, benzaldehyde, eugenol and isoamyl acetate. In this 4 odor associative

learning task, mice were run for a 4th day of imaging, in which the lick spout was removed from the head-fixed setup to image

mice in the absence of reward delivery.

Calcium data processing
Videos were motion corrected offline with the TurboReg registration plugin in FIJI. An average intensity z-projection of the first 100

stable frames (assessed manually) was used as a template with the translation model of motion correction. Cell segmentation and

calcium transient time series data were extracted using Constrained Non-negative Matrix Factorization for microEndoscopic data

(CNMF-E), a semi-automated algorithm optimized for GRIN lens Ca2+ imaging to denoise, deconvolve and demix calcium imaging

data (Zhou et al., 2018). Briefly, this software uses a non-negative matrix factorization algorithm to extract the putative denoised

calcium signals and spatial footprints. Putative neurons were identified, and sorted by visible inspection for appropriate spatial

configuration and Ca2+ dynamics as described above, and putative units were manually merged or split from visual inspection.

We ran the CNMF-E algorithm on each recording session separately to extract denoised calcium traces, inferred calcium events

and spatial footprints. For all plots, we used the inferred calcium events for analysis unless otherwise specified.

Registration of cells across pre and post-conditioning sessions imaged at the same FOV was achieved using probabilistic

modeling of similarities between cell pairs across sessions (Sheintuch et al., 2017). Briefly, spatial footprint maps were generated

for each session by projecting the spatial filter of each cell onto a single image. Spatial footprint images from sessions imaged at

the same FOV were then aligned. The distribution of similarities between pairs of neighboring cells were subsequently modeled

via centroid distance to obtain an estimation for their probability of being the same cell (Psame). Cells were then registered across

pre and post sessions via a clustering procedure that utilizes the previously obtained probabilities, with a probability threshold of 0.8.

The average Psame value for registered cells was 0.96.

QUANTIFICATION AND STATISTICAL ANALYSIS

Odor responsivity
We defined cells as responsive to an odor by comparing the calcium events identified within all presentations of that odor with the

events identified in the baseline period of 4 s preceding odor presentations. We used a two-sided Mann-Whitney-U test to assess if

the difference in activity levels were statistically significant (**p < 0.01, *p < 0.05 for all tests in manuscript, see Table S1). Then, a cell

was considered responsive if the FDR-adjusted p value of the statistical test was lower than 0.05 for a given odor or combination of

odors (i.e., responsive to more than one odor). For raster plots of odor responses, normalized Ca event magnitude was generated by

dividing each event magnitude by the mean event magnitude across the session and average across trial.

In learning experiments where we computed the stability of odor responses across sessions, we pooled all cells across all themice

and identified the same cells in the pre-(day 1) and post-conditioning (day 3) sessions through registration (see above). We consid-

ered cells that were responsive to one odor in the pre-conditioning session and their response profile in the post-conditioning

session. We expressed the percentage of responsive cells in the post-conditioning session with respect to the subgroup of cells

considered in the pre-conditioning session.

We also determined whether activity of LEC or DG neurons were modulated by reward consumption or correlated with licking or

breathing. For reward responsivity, we generated peristimulus time histograms of normalized Ca2+ activity (by dividing the event

magnitude by the mean event magnitude across the session) centered at the first lick after reward availability. Activity was averaged

across trials (10) and cells for each mouse, and averaged across mice. Lick rates were computed in each time bin and averaged

across trials and across mice.

To look for a relationship between licking or breathing and neural activity, we regressed the lick rates or the breathing rates across

the session against the calcium events.We fit a linear regression model to predict lick rates or breathing rates and used the explained

variance (r2) as ameasure of goodness of fit to compare the results across animals and days.We divided each analyzed session in 10
e4 Neuron 107, 173–184.e1–e6, July 8, 2020
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time-contiguous blocks and computed the generalization performance of the model with 10-fold cross-validation over these blocks

to avoid overfitting. Regression was performed with regular linear regression with L2 norm or with Lasso, and verified that the results

are not qualitatively different in either case (we report the more stringent case of Lasso in Figure S4).

Modulation index
For each odor presentation, we first extracted the raw calcium trace in a window between 5 s prior to the odor onset and 10 s after

odor offset. We then divided all the traces by their standard deviation computed across all presentations of that odor as normaliza-

tion. Finally, the modulation index was computed as:

df =
rs � rb
rb

3 100

where rs is themean calcium trace during odor presentation of a cell, averaged across trials, and rb is the same quantity but computed

on the 4 s preceding odor presentation.

Decoding
We used a linear decoder to discriminate patterns of activity into two discrete categories (Bishop, 2006):

yðtÞ = qðW r!ðtÞ + bÞ
where y tð Þ is the predicted label of the population activity pattern r

!
recorded at time t and takes two values corresponding to the two

classes of patterns to decode (for instance, the two odor identities),W is the vector of weights assigned to each cell and b is a con-

stant bias term. Decoding parameters were obtained through a supervised learning protocol on labeled data using a support-vector

machine (SVM) with a linear kernel (python/scikit/linearSVC). Data is reported as the generalized performance of the decoder using

cross-validation, a standardmachine learning procedure to avoid data overfitting. Whenmultiple categories were involved, i.e., more

than two odors, multiple linear decoders were trained on pairs of discrete categories combined using majority-based error-correc-

tion codes.

For decoding odor identity, we used a linear decoder trained on the recorded population activities. For each odor presentation, we

defined the patterns of calcium activity by computing themean event rates during the 4 s of odor presentation. We then evaluated the

ability of the decoder to predict the odor identity based on the calcium activity on 10-fold cross-validated data, unless specified

otherwise. To determine differences in the ability of our decoder to discriminate between single odor pairs, we used only the trials

corresponding to that odor pair and measured performance in this subset with cross validation. For reporting decoding performance

for single animals, we compared to a distribution of chance decoding performances computed by training our decoder on data in

which odor identities were randomly shuffled with respect to the population activity patterns (n = 100 datapoints). When combining

animals to compute average decoding performance of a group, we computed mean performance for each animal across different

choices of training and test data (cross-validation) and performed a tests for significance from chance or between groups. When

comparing decoding performance between neural populations of different size, we trained our decoder on a subsample of randomly

chosen cells from the more numerous population equal to that of the smaller population. We repeated the operation 100 times and

then combined the cross-validated decoding accuracies of all random choices together to get a single sample of decoding accu-

racies. In conditions where we pooled cells across animals, we generated pseudo-population recordings by combining cells across

multiple FOVs. We generated 100 trials of pseudopopulation activity for each odor separately by choosing a random trial for each

neuron independently. For decoding odor identity from the pseudopopulation, we divided the dataset in two halves. To generate

the training set, we chose from trials of the first half, and for the test set, from the second half. To balance the number of cells across

groups (for instance LEC vs DG) we also subsampled the cells by randomly selecting cells to generate the train and test patterns. We

repeated the procedure 1000 times for statistical comparisons across groups and against chance decoding performance.

To decode odor identity around stimulus onset, we first averaged the event rates in 1 s long time bins between 3 s before odor

presentation onset and 6 s after offset. We then trained a separate decoder for each time bin separately and assessed its perfor-

mance on 5-fold cross-validated data.

For the DG model, we determined whether a model based upon random connectivity could generate the observed increase de-

coding performance in DG with respect to LEC. We first generated pseudopopulation data as explained above. We calibrated the

sparsity in the model, i.e., the fraction of cells with a larger than zero calcium activity for any pattern, based on the training half of

the pseudo-simultaneous population data. Then we equalized the number of cells across different groups to compare decoder per-

formances by subsampling at random from the population of cells in a number equal to theminimum number of cells available across

groups. We repeated the procedure to generate pseudo-population and cells subsampling 1000 times to perform statistical

comparisons.

In the model, each LEC cell is connected through a synaptic matrixW to a fixed number of DG cells (n = 10) (Abusaad et al., 1999)

with weights drawn from a Gaussian distribution of zero mean and unitary variance. DG cells are modeled as threshold-linear units,

therefore the activity pattern in DG in the model r!DG is obtained from the activity pattern of LEC cells r!LEC as follows:

r!DG = qðW r!LEC �bÞ
Neuron 107, 173–184.e1–e6, July 8, 2020 e5
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where q= 0 if its argument is lower than zero and b is a threshold. The sparsity of activations in DG is regulated by the threshold b

which is adjusted to match the sparsity levels across patterns of each odor in the DG data.

Ensemble similarity
To compute pattern similarities (McKenzie et al., 2016), we computed the mean event rates during each odor presentation in a

session as well as the patterns during 4 s prior to odor onset as baseline. We then computed the mean cosine similarities (Pearson

correlation) between every pair of patterns as:

s =
1

N

XN

i;jsi

r
!

i r
!

j

j r!ij
�� r!j

��

where r!i and r!j are the patterns of population activities for trial i and j and N is the total number of pairs of patterns counted once.

The similarity values where then pooled to verify for statistical differences across categories of stimuli, for instance patterns of same

odors versus patterns different odors, or patterns from the same session versus patterns from different sessions.

Overlaps
In order to compute overlapping responses, we determined the number of cells that showed statistically significant responses to two

odors (or 3 odors for 3 odor overlap) (See Odor responsivity above). To assess statistical significance, we pooled together cells from

all mice in each region to generate pseudo-simultaneous recordings. To generate chance distributions, we randomly assigned odor

responses to all cells for each of the two odors (or 3 odors for 3 odor overlap) with probabilities that matched the proportion of respon-

sive cells for each odor as in the real data. We computed the overlap for each random assignment and repeated the procedure 10000

times to obtain a chance distribution.We finally assessed the statistical significance of the actual overlap between the two (or 3) odors

by computing the probability of obtaining that value from the chance distribution assuming a normal distribution of estimated mean

and variance.

Lifetime sparseness
We computed lifetime sparseness by:

S =
1� A�
1� 1

N

�

where N is number of odor stimuli and A is the activity fraction (Rolls and Tovee, 1995):

A =

�P
i
ri
N

�2
P

i

r2
i

N

The activity fraction is computed on the average activity pattern ri for each odor i (Vinje and Gallant, 2000):

ri =
1

M

X

j

rji

where j = 1; .; M and M is the total number of trials.

Signal to noise (SNR)
We computed the Signal-to-Noise ratio by:

SNR =
jSj2

jS� Srawj2

Where S is the convolved calcium trace and Sraw is the raw calcium trace (Zhou et al., 2018).
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Supplementary figure  1 (Related to Figures 1-5) 
A-B. Reconstructed lens implant locations of total of DG (A) and LEC mice (B) used throughout 
study, with dotted line indicating the estimated location of the impression left by lens on tissue, 
superimposed on mouse brain atlas. C. LEC-DG TeLC based synaptic silencing, with mCherry 
positive terminals shown within the outer molecular layer shown on left (arrowheads), and a 
representative coronal section showing mCherry positive cells located in LEC on right, with mCherry 
positive cells quantified across animals used throughout study (mean +/- SEM, n=11 mice). Scale 
bars: 100 microns. D-F. Odors elicit distributed responses in the population of recorded DG GCs. 
Modulation index (see Methods) for each cell (in rows) combined across n = 8 DG mice (D), n=7 LEC 
mice (E) and n= 3 LEC-DG TeLC mice (F) is color coded for the panel of six neutral odors (in 
columns). Same 6 neutral odors as labeled in Figure 1. G. Cells co-responsive to tones and odors are 
not more prevalent than expected by shuffling odor and tone responses across cells. Mice were 
presented 3 neutral odors and 3 tones (see Methods). Odor responsive and tone responsive overlap 
cells (pie chart, above) are compared to a chance overlap distribution obtained by pooling cells from 
all mice. Pie chart shows percentage of only tone, only odor, tone+odor co-responsive cells, or non-
responsive cells. Odor responsive and tone responsive overlap cells are compared to a chance 
overlap distribution (n=668 cells in 3 mice, p>0.05). Error bars represent SEM. For exact P values, 
see Supplementary Table 1. 
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Supplementary figure 2 (related to figure 4) 
A. Odor responses to EB/MB/IAA are sparse and randomly distributed in the FOV. Spatial footprints 
shown from an example mouse, with overlaid modulation index for each cell (see Methods). B.  Percent 
responsive cells in 6 odor (benzaldehyde, eugenol, heptanal, hexanal, pinene, eucalyptol) experiment 
in DG, LEC and LEC-DG TeLC mice.  C.  Percent responsive cells in 3 odor experiment (ethyl butyrate, 
methyl butyrate, isoamyl acetate) in DG, LEC and LEC-DG TeLC mice.  D. Confusion matrices for 
decoding accuracy in the three odor experiment in DG and LEC.  G-H. E-F. The accuracy of a decoder 
to classify odor identity was greater in DG than in LEC activity for both the 3 odor (E) and 6 odor (F) 
experiment. A model of DG based on random connectivity with comparable levels of sparseness could 
not perform as well as real DG data in classifying odor identity in either the 3 odor or 6 odor design . 
(linear SVM classifier with matched number of cells in DG and LEC, 3 odor: n=190 cells (n-matched, 
from 3 LEC and 8DG mice), 6 odor n=703 cells, (n-matched, from 3 LEC and 8DG mice), t-test, 
**p<0.01). G. Trial by trial similarity matrix in DG and LEC mice for the three odor experiment.  H. Odor 
ensembles were more distinct for presentation of different odorants in DG than LEC mice, and in this 
experiment, within odor correlations were higher in DG compared to LEC mice.  (Pearson correlation of 
activity vectors during odor presentation, n= 8 DG mice, 3 LEC mice, Mann-Whitney, **p<0.01, * 
p<0.05). I. Ensemble similarities computed in non-odor delivery baseline periods. J. Decoding accuracy 
in the DG GCs model doesn't depend on sparsity. We varied the proportion of LEC projections per DG 
GCs as well as the activation threshold for each model neuron. The parameters effectively change the 
sparsity of activations across neurons in DG and are the only parameters in the model. For each pair of 
parameters, we ran 10 models and report here the average decoding accuracy across models. Error 
bars represent SEM. For exact P values, see Supplementary Table 1. 
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Supplementary figure 3 (related to Figure 4) 
A. Left DG mice, right, LEC mice. Pre-conditioning percent time spent freezing to each context, 
showing lack of initial fear responses to neutral odorants (one-way ANOVA, p>0.05). B. Left DG mice, 
right, LEC mice. Context discrimination indices comparing a/b contexts and b/c contexts.  In both the 
DG and LEC cohorts, mice were better at discriminating distinct context pairs (b/c) compared to context 
pairs (a/b) (n=7 mice/group, t-test , p<0.05). C. Preconditioning context discrimination did not differ 
between control and LEC-DG TeLC mice.  D. Baseline, pre-learning odor identity could be decoded in 
all mice tested (3 odor decoding, SVM with linear kernel, one sample t-test, p<0.001 for all mice from 
chance decoding performance (see Methods for single animal decoding), error bars indicate SEM from 
cross validation of decoder). E. Odor identity could be decoded within 2s of odor onset (n=7 mice, all 
values mean +/- SEM for each mouse). For each 1s timebin, a different decoder is trained on the data 
for the corresponding bin. Generalization performance on held-out data is reported as decoding 
accuracy. The solid black line corresponds to mean across mice in each time bin. For all mice, the 
decoding performance was significantly higher than chance (dashed line) for several seconds after odor 
offset. F. Decoding accuracy of odor a vs odor b in the post-conditioning session correlated with context 
freezing behavior (Pearson r=0.81, p<0.05, n=7 mice). G. Decoding performance for a/b does not 
depend on number of cells per mouse (Pearson r=0.26, p>0.05, n=7 mice). H-I. Decoding accuracy of 
odors b and c (MB and IAA) before or after fear learning does not correlate with freezing behavior after 
learning (pre r=0.45, post r=-0.36, n=7 mice, linear fit with solid line, p>0.05, n=7 mice). J. Better 
discriminability of contexts a/b vs b/c correlate with decoding of these odors. (Pearson r=-0.85, p<0.05, 
n=7 mice). K. Pearson similarity ensemble metric was generated for odors from contexts a/b and 
plotted against pre-conditioning context discrimination index for contexts a/b. (Pearson r=-0.78 and 
p<0.05, n=7 mice). Error bars represent SEM. For exact P values, see Supplementary Table 1. 
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Supplementary Figure 4 (related to Figure 5) 
A. Average lick rates during the odor and trace period on day 1 (pre) and day 3 (post) in LEC mice, and 
in LEC-DG TeLC mice, as analyzed in Figure 4 (Mann-Whitney, **p<0.001) B. Example pre and post 
spatial footprints showing registration results of identified ROIs that are within centroid differences 
established within 95% of a confidence interval. Average centroid displacement shown on right for 
registering cells pre to post, using CellReg algorithm. C-D. Overlaps of cell responses for odor pairs 
and triples before and after learning for all recorded DG GCs (C), and LEC cells (D), (level of 
significance for 10,000 shufflings, , **p<0.01, *p<0.05, n=3 DG mice and n=3 LEC mice). E. Fraction of 
trials that cells are active, plotted for each individual odor in DG and LEC. After learning, an increased 
percentage of cells are responsive to the CS+ odor across trials within DG. (DG post, CS+ odor vs all 
others KS test, P<0.001). F. Cumulative distribution plot arranged by calcium event rate pre and post 
learning (average events per second for each cell during entire imaging period, KS test, p<0.001 
between LEC and DG). G. Odor responses in Post for cross-session registered cells. Cells were 
classified as CS- (IAA) responsive Pre, and then their responses were determined in Post. Unlike with 
the EB/MB pair in Figure 5K,a similar proportion of LEC and DG neurons became responsive to the 
CS+ odor after learning. (n=3 DG mice, 359 cells; n=3 LEC mice, 182 cells X2 test, p<0.01). H. Four 
odor associative learning task.  Four distinct odors were given, and two CS+ odors were followed by a 
trace period and a sucrose reward (CS+ assignment randomized among mice). Left, lick rate to CS+ 
odors in pre and post learning.(n=2 mice, **p>0.01)  Mice show CS+ biased licking on the first day in 
this design.  Proportion of CS+ responding cells in the DG increase after learning (n=2 mice p<0.01)  
Right. High decoding accuracy on D1 with  improvement with learning. Decoding accuracy was reduced 
in an extinction session with the lick spout removed (n=443 cells, from 2 DG mice, **p<0.01).  I. Signal-
to-noise (SNR) for all cells combined across LEC (n=360 in 3 mice) and DG mice (n=531 in 3 mice). 
The horizontal line represents the median SNR for each population, the boxes represent first and thirds 
quartile of the distribution and the whiskers represent 9th and 95th percentiles. The two distributions 
are not significantly different (t-test, p=0.87).  J. A cohort of DG and LEC mice were imaged for sucrose 
responses in the absence of odor delivery.  For all cells we calculated a peri-stimulus time histogram 
(PSTH) for normalized Ca2+ activity (black line) triggered on the first lick after sucrose availability 
(licking rate in blue). Reward consumption did not modulate DG (531 cells in 3 mice) or LEC ( n=360 
cells in 3 mice) activity. Shaded areas are +/-SEM.  K-L. Linear regression of lick rates (K) and 
breathing rates (L) and Ca2+ in DG and LEC before (pre) and after (post) associative learning (see 
Methods).   We found that neural activity is not significantly correlated to lick rates (R2 is approximately 
zero for all animals in both sessions, DG pre n=531 cells in 3 mice, DG post n=627 cells in 3 mice, LEC 
pre n=360 cells in 3 mice, LEC post n=266 cells in 3 mice, no significant difference between pre and 
post in either group, p>0.05). In addition, we found that correlations of breathing rates with Ca2+ did not 
differ between LEC and DG recordings  (n=2 LEC mice, 3 DG mice, Mann Whitney, p>0.05). All error 
bars represent mean +/- SEM. For exact P values, see Supplementary Table 1. 
 
 
 
 
 
 
 
 
 
 
 

 



figure unit of comparison variable n test results (p-value)
Fig. 3c pseudopopulation of cells, 

10000 iterations (see 
methods)

6 odor decoding accuracy dg=8, lec=7, 
tent=3, 189 cells, 

n matched
mann whitney U

LEC vs DG p<0.0001, DG vs LEC-
DG TeLC p<0.0001

cells from trial pairs lec same, lec diff
42, 105 (from 7 

LEC mice)
t=5.69, p=6.5E-08

lec same, dg same
42, 48 (8 DG and 

7 LEC mice)
t=-.071, p=0.483

dg same, dg diff
48, 120 (8 DG 

mice)
t=-7.81, p=0.6.28E-13

lec diff, dg diff
105, 120 (8 DG 

and 7 LEC mice)
t=-2.556, p=0.01

TeLC same, TeLC diff
18, 45 (3 LEC-DG 

TeLC mice)
t=-1.65, p=0.104

Fig.4a mice percent time spent freezing 
to each odor

8 TeLC, 7 control repeated measures 
ANOVA

odorXgeno interaction F = 6.16 and 
p<0.0001

Holm-Sidak's 
multiple comparison

odor eb(a), p=0.303
odor mb(b), p<0.001
odor iaa (c), p=0.755

Fig 4c mice percent time spent freezing 
to each odor

7DG one-way ANOVA ANOVA summary: F=37.6, p<0.001

Holm-Sidak's 
multiple comparison

odors mb (b) vs. eb (a), p=0.007
odors mb (b) vs. iaa (c), p=<0.001

odors eb (a) vs. iaa (c), p=0.005
Fig. 4d mice discrimination index of 

(a/b) vs. PRE-conditionig 
decoding performance 
(a/b)

7 DG pearson correlation 
coefficient

r=0.959, p=0.0003

Fig 4e mice percent time spent freezing 
to each odor

7LEC one-way ANOVA ANOVA summary: F=30.26, 
p<0.001

Holm-Sidak's 
multiple comparison

dors mb (b) vs. eb (a), p<0.001
odors mb (b) vs. iaa (c), p<0.001
odors eb (a) vs. iaa (c), p=0.006

Fig. 4f mice discrimination index of 
(a/b) vs. PRE-conditionig 
decoding performance 
(a/b)

7 DG pearson correlation 
coefficient

r=-0.2406, p=0.3016

Fig. 5c animals lick rate (Hz) during 2s 
delay vs. baseline

3 DG Mann-Whitney U=1187.5, p=8.62e-18

Fig. 5f cells co-responsive odor a/b 
cells vs. chance overlap 
PRE and POST learning

359 (3 DG mice) p-value relative to 
shuffle (10,000)

PRE: EB/MB (a/b): p=0.0044

POST: EB/MB (a/b): p=0.312
Fig. 5g cells co-responsive odor a/b 

cells vs. chance overlap 
PRE and POST learning

182 (3 LEC mice) p-value relative to 
shuffle (10,000)

PRE: EB/MB (a/b): p=0.00413

POST: EB/MB (a/b): p=0.0129
Fig. 5h cells fraction total cells active for 

all odors PRE vs. POST 
learning

359 (3 DG mice) t-test for 
independence, 
bonferroni 
correction for n=6

EB (a): p= 3.970e-05

MB (b): p=4.688e-04
Fig. 5i cells fraction total cells active for 

all odors PRE vs. POST 
learning

182 (3 LEC mice) t-test for 
independence, 
bonferroni 
correction for n=6

EB (a): p=5.49e-01

MB (b): p=1.00
Fig. 5j cells fraction total cells active for 

all odors PRE vs. POST 
learning

150 cells  (2 LEC-
DG TeLC  mice)

t-test for 
independence

EB (a): t=-4.222 p=4.78E-05

MB (b): t=-6.176 p=9.63E-09
Fig. 5K cells fraction of responsive cells 

in POST among 
responsive cells in PRE for 
each odor

 182 LEC and 359 
DG, PRE and 

POST learning

Chi-square, 
Bonferroni adjusted

EB (odor a, CS-) chi=56.0, 
p=9.4439e-10, p_adj=2.8332e-09
MB (odor b, CS+) chi=14.0, 
p=5.1181e-02, p_adj=1.5354e-01
IAA (odor c) chi=16.0, p=2.5116e-
02, p_adj=7.5349e-02

Fig. 5l mice lifetime sparsity PRE vs. 
POST

3 DG Mann-Whitney U=1.45e+05, p=1.317e-03

mice lifetime sparsity PRE vs. 
POST

3 LEC Mann-Whitney U=4.36e+04, p=5.699e-02

Fig. 5m mice 3 odor (a/b/c) decoding 
accuracy PRE vs. POST

n= 359 cells from 
3 DG mice

Mann-Whitney U=264.00, p=4.692e-03

mice 3 odor (a/b/c) decoding 
accuracy pre vs. post

n=182 cells from 
3 LEC mice

Mann-Whitney U=282.00, p=1.1632e-02

t-test for 
independence

Fig. 3e



mice 3 odor (a/b/c) decoding 
accuracy pre vs. post

n=150 cells from 
2 mice

Mann-Whitney U=161.5, p=0.296

Fig. 5n mice across session decoding 
accuracy (3 odors (a/b/c))

3 DG and 3 LEC 
mice

Mann-Whitney U= 2.28e03, p=1.082e-12

supplementary 
figures

Fig. S1g cells

odor and tone co-
responsive cells vs. chance 
overlap 668 (3 DG mice)

p-value relative to 
shuffle (10,000) p = 0.238

Fig S2e n matched cells, 1000 
iterations (see methods) 

3 odor (a/b/c) decoding 
accuracy in LEC vs. DG 
vs. DG model

190 LEC vs. 190 
DG (n-matched) 
n=3LEC, 8DG

 t-test LEC vs. DG: t=-25.04,   p=2.22e-44

DG vs. model: t=34.31, p=2.43e-72

Fig S2f n matched cells, 1000 
iterations (see methods)

6 odor (a/b/c) decoding 
accuracy in LEC vs. DG 
vs. DG model

703 LEC vs. 703 
DG (n-matched) 
from 8 DG mice, 

7 LEC mice

t-test LEC vs. DG: t=-118, p<0.0001

DG vs. model: t=226, p<0.0001

cells from trial pairs lec same, dg same

9, 24 odor pairs 
(8 DG and 3 LEC 

mice)
t=-2.09, p=0.04

lec diff, dg diff

9, 24 odor pairs 
(8 DG and 3 LEC 

mice)
t=3.41, p=0.002

Fig. S2i animals Pearson correlation 
grouped for same odor vs. 
different odor

LEC 3 Mann-Whitney U=38.00, p=0.859

DG 8 Mann-Whitney U=303.00, p=0.765
Fig. S3a mice percent time spent 

freezing to each odor
7 DG one-way ANOVA ANOVA summary: F=0.5320, 

p=0.538

Holm-Sidak's 
multiple comparison

odors mb (b) vs. eb (a), p=0.851
odors mb (b) vs. iaa (c), p=0.851
odors eb (a) vs. iaa (c), p=0.330

7 LEC one-way ANOVA ANOVA summary: F=0.05242, 
p=0.937

Holm-Sidak's 
multiple comparison

odors mb (b) vs. eb (a), p=0.991
odors mb (b) vs. iaa (c), p=0.991
odors eb (a) vs. iaa (c), p=>0.999

Fig. S3b mice (a/b) discrimination index 
vs. (b/c) discrimination 
index

7 DG t-test t=-2.78, p=0.0167

Fig. S3b mice (a/b) discrimination index 
vs. (b/c) discrimination 
index

7 LEC t-test t=-3.188, p=0.0078

Fig. S3c mice percent time spent freezing 
to each odor

8 TeLC, 7 control one-way ANOVA ANOVA summary: F=2.335, 
p=0.148

Holm-Sidak's 
multiple comparison

odors mb (b) vs. eb (a), p=0.560
odors mb (b) vs. iaa (c), p=0.06
odors eb (a) vs. iaa (c), p=0.424

Fig. S3d mice 3 odor (a/b/c) PRE-
conditioning decoding 
score 

7 DG t-test p<0.0001 for all individual mice 
comparisons to chance

Fig. S3f mice discrimination index of 
(a/b) vs. POST-
conditioning decoding 
performance (a/b)

7 DG pearson correlation 
coefficient

r = 0.81, p = 0.0273

Fig. S3g mice number of cells per FOV 
vs. PRE-conditioning 
decoding accuracy (a/b)

7 DG pearson correlation 
coefficient

r=0.26, p=0.579

Fig. S3h mice discrimination index of 
(b/c) vs. PRE-conditionig 
decoding performance 
(b/c)

7 DG pearson correlation 
coefficient

r = 0.45, p = 0.312

Fig. S3i mice discrimination index of 
(b/c) vs. POST-conditionig 
decoding performance 
(b/c)

7 DG pearson correlation 
coefficient

r = -0.36, p = 0.4298

Fig. S3j mice discrimination index 
difference (b/a-b/c) vs. 
decoding difference (b/a-
b/c)

7 DG pearson correlation 
coefficient

r=-0.85, p=0.014

Fig S2h
t-test for 

independence



Fig. S3k mice discrimination index of 
(a/b) vs. pre-conditionig 
ensemble pearson 
similarity metric (a/b)

7 DG pearson correlation 
coefficient

r=-0.78, p=0.02

Fig. S4a mice lick rate (Hz) during 2s 
delay vs. baseline

3 LEC Mann-Whitney U=285.00 , p=2.095e-28

Fig. S4a mice lick rate (Hz) during 2s 
delay vs. baseline

2 LEC-DG TeLC Mann-Whitney U=514.0 , p=6.634e-12

Fig. S4c cells co-responsive odor cells 
vs. chance overlap PRE 
and POST learning

359 (3 DG mice) p-value relative to 
shuffle (10,000)

PRE: EB/IAA (a/c): p=0.0115
PRE: MB/IAA (b/c): p=0.0395
PRE: MB/EB/IAA (a/b/c): 
p=0.000494
POST: EB/IAA (a/c): p=0.0223
POST: MB/IAA (b/c): p=0.0448
POST: EB/MB/IAA (a/b/c): p=1.39E-
06

Fig. S4d cells co-responsive odor cells 
vs. chance overlap PRE 
and POST learning

182 (3 LEC mice) p-value relative to 
shuffle (10,000)

PRE: EB/IAA (a/c): p=0.001367
PRE: MB/IAA (b/c): p=0.0710
PRE: MB/EB/IAA (a/b/c): p=6.36E-
08
POST: EB/IAA (a/c): p=0.0223
POST: MB/IAA (b/c): p=0.0448
POST: EB/MB/IAA (a/b/c): p=1.39E-
06

Fig. S4e cells cumulative distribution 
function of percent active 
cells vs. number of trials 
active, PRE and POST 
learning for odors a, b, c

 182 LEC and 359 
DG, PRE and 
POST learning

parametric t-test for 
independence, 
Bonferroni adjusted 
for n=12

LEC PRE:
EB/MB (a/b): t=-3.11, p=2.87e-03
EB/IAA (a/c): t=-3.83, p=3.12e-04
MB/IAA (b/c): t=-0.654, p=5.15e-01
LEC POST:
EB/MB (a/b): t=-3.58, p=6.911e-04
EB/IAA (a/c): t=-3.58, p=7.21e-01
MB/IAA (b/c): t=3.06, p=3.32e-03
DG PRE:
EB/MB (a/b): t=2.60, p=1.156e-02
EB/IAA (a/c): t=6.03, p=1.184e-07
MB/IAA (b/c): t=3.31, p=1.57e-03
DG POST:
EB/MB (a/b): t=-8.83, p=2.45e-12
EB/IAA (a/c): t=-2.50, p=1.49e-02
MB/IAA (b/c): t=6.18, p=6.79e-08

Fig. S4f cells cumulative distribution 
function for event rate, 
PRE vs. POST learning for 
LEC and DG

 182 LEC and 359 
DG, PRE and 
POST learning

KS 2-samples LEC p = 0.0124,
DG p = 0.00002554,
LEC adjusted Bonf. p = 0.02482,            
DG adjusted Bonf. P<0.001

Fig. S4g cells fraction of responsive cells 
in POST among 
responsive cells in PRE for 
each odor

 182 LEC and 359 
DG, PRE and 
POST learning

Chi-square, 
Bonferroni adjusted

IAA (odor c, CS-) chi=16.0, 
p=2.5116e-02, p_adj=7.5349e-02

Fig. S4h mice lick rate (Hz) during 2s 
delay vs. baseline

2 mice Mann-Whitney pre vs post U=10648.0,  p<0.001

Fig. S4h 1000 iterations (see 
methods)

4 odor decoding accuracy n=443 cells from 
2 DG mice

Mann-Whitney pre vs post U=2.68e+03, p=1.488e-
08, post vs ext U=1.00e+04, 
p=2.455e-34

Fig S4i cells SNR n= 3 DG mice 
(531 cells), 3 LEC 
mice (360 cells)

t-test t=-0.160, p=0.87

Fig S4k mice correlation to licking (pre 
vs post)

N=3 LEC, 3 DG Mann-Whitney DG U=0.0, p=0.08, LEC U=1.0,  
p=0.19

Fig S4l mice correlation to breathing 
(LEC vs DG)

N=2 LEC, 3 DG Mann-Whitney
U=5.0, p=0.386



Supplementary Table 1 (related to all Figures).  Summary of statistics in all figure panels in 
manuscript.  
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