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Abstract: The neural dynamics that underlie divergent anhedonic responses to stress remain 
unclear. Here, we identified neuronal dynamics in an amygdala-hippocampal circuit that 
distinguish stress resilience and susceptibility. In a reward-choice task, basolateral amygdala 
(BLA) activity in resilient mice showed enhanced discrimination of upcoming reward choices. In 25 
contrast, a rumination-like signature emerged in the BLA of susceptible mice; a linear decoder 
could classify the intention to switch or stay on a previously chosen reward. Spontaneous activity 
in the BLA of susceptible mice was higher dimensional than controls, reflecting the exploration 
of a larger number of distinct neural states. Manipulation of vCA1-BLA inputs rescued 
dysfunctional neural dynamics and anhedonia in susceptible mice, suggesting that targeting this 30 
pathway can enhance BLA circuit function and ameliorate of depression-related behaviors. 

One-Sentence Summary: Identification and rescue of dysfunctional vCA1-BLA population 
dynamics and behavior in stress-susceptible mice. 

 
  35 
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Main Text:  
Organisms adapt their behavior to increase chances of obtaining high-value rewards. These 
drives for rewards are particularly influenced by changes in emotional states. Anhedonia, a core 
feature of depression, is characterized by a reduced ability to experience pleasure (1), leading to 
diminished reward responsiveness, learning, and valuation (2–5). In rodent models, while some 5 
animals show resilience to chronic stress, a subset of stress-susceptible mice display high levels 
of social avoidance and reduced preference for high-value rewards (5–7). The underlying neural 
dynamics that may produce these behavioral differences in resilient and susceptible individuals 
remains a significant and unanswered question. 
The reciprocally connected amygdala (AMY) and ventral hippocampus (vHPC) are crucial nodes 10 
in an extended network responsible for generating emotional and motivated behavior (8–37). In 
addition to its role in threat detection and anxiety-related behavior, the basolateral amygdala 
(BLA) generates outcome-specific reward representations to guide decision-making (38–45). 
Ventral CA1 (vCA1) has also been shown to encode reward-predictive stimuli and drive reward-
related approach behaviors (46–50). However, how these reward-related functions of vCA1 and 15 
BLA are impacted by changes in emotional state remain unclear. While stimulus-evoked 
responses in single neurons in the BLA and vCA1 have been well-studied, we know significantly 
less about how the reward-related internal states of the animal are represented in the BLA and 
vCA1 and how they drive choice-related behavior. Moreover, how these reward-related 
dynamics, or spontaneous patterns of activity, in the BLA or vCA1 may differ in mice 20 
susceptible or resilient to chronic stress, and how targeted interventions in this circuit may 
reduce susceptible phenotypes remain unknown. As the internal states can be detected and 
studied only by looking at the correlations between the neural activities of multiple neurons, it is 
essential to record simultaneously from a large number of neurons, and to analyze the activity at 
the population level. Moreover, compared to single neuron responses, population activity can 25 
more accurately reveal the dynamics of internal states. Here, we conducted high-density 
Neuropixels recordings (51) in vCA1 and BLA and used population decoders to analyze the 
reward-related and spontaneous dynamics of populations of neurons to identify distinctive neural 
signatures of susceptibility and resilience to chronic stress. Then, we developed a novel circuit-
specific modulation approach to rescue aberrant BLA population dynamics and associated 30 
anhedonic behavior in stress-susceptible mice. 
 

Results 
Distinct behavioral signatures of resilient and susceptible mice following CSDS 

We performed high-density single unit electrophysiology using Neuropixels probes implanted in 35 
BLA and vCA1 in control mice and those subjected to chronic social defeat stress (CSDS) (Fig. 
1A-E). We recorded activity both under a stimulus-free pre-task condition and as mice 
performed a novel head-fixed sucrose preference test (SPT). CSDS produced mice with varying 
degrees of sucrose preference and social interaction scores that were highly correlated (Fig. 1F). 
We used these measures to perform unsupervised K-means clustering to classify mice as resilient 40 
or susceptible (Fig. 1G). The susceptible mice identified using this classification showed lower 
lick rates during sucrose consumption, as well as reduced lick rate discrimination between 
sucrose and water rewards, behavioral subcomponents that reflect anhedonia (5) (Fig. 1H-I and 
S1A-B).   
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Fig. 1. Distinct behavioral signatures of resilient and susceptible mice following CSDS. (A) 
Schematic of SPT and Neuropixels recording protocol following CSDS. (B) Schematic of SPT 
protocol. Lick rasters were from two representative mice with different sucrose preferences. (C) 5 
Neuropixels probes were targeted to BLA and vCA1. (D) Example BLA and vCA1 spike rasters 
during task. (E) Example peristimulus time histogram of BLA and vCA1 neurons around the time 
of reward delivery (time 0). (F) CSDS, but not control, mice showed a significant correlation 
between sucrose preference and social interaction ratio. (G) Unsupervised K-means clustering 
revealed 2 distinct subgroups of CSDS mice. (H) Susceptible mice showed reduced sucrose lick 10 
rate during Post-reward period compared to resilient mice (RM-ANOVA, group x time interaction: 
F2,57 = 5.63, P = 0.0059). (I) Susceptible mice showed reduced lick rate discrimination index 
compared to control and resilient mice (RM-ANOVA, group x time interaction: F2,57 = 48.47, P < 
0.0001). Data are mean ± SEM. # Significantly different from chance; * P < 0.05; ** P < 0.01. 
 15 

Enhanced discrimination of reward choice in stress resilient mice  
As we observed robust sucrose-seeking behaviors in resilient mice as compared to susceptible 
mice, we looked for specific adaptations in neural representations of reward-related information. 
Mice were allowed to freely choose water or sucrose and indicated their choice by licking a 
spout to trigger reward delivery (Fig. 2A). We defined a trial type (sucrose or water) using a time 20 
window around reward delivery (4s Pre- to 4s Post-reward), as it allowed us to assess neural 
activity patterns before the mice behaviorally made their choices and after they consumed the 
reward. When quantifying reward-choice-selectivity of each recorded BLA and vCA1 neuron, 
we found that resilient mice had the highest proportion of reward-choice-selective neurons in the 
BLA during both reward consumption (Post-reward) and in the seconds before reward delivery 25 
(Pre-reward) compared to susceptible and control mice (Fig. 2B-C). This difference in stress 
groups was specific for BLA as, in vCA1, we found that stress increased the proportion of 
reward-choice-selective neurons in all mice. To investigate differences between groups at the 
population level, we trained linear classifiers to discriminate trial types, balancing the number of 
current and past rewards for each trial type (Fig. 2D, see Methods). When analyzing Pre-reward 30 
time bins, we again found that in resilient mice, upcoming reward choice could be decoded from 
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neural activity in BLA better than chance and better than from neurons in control and susceptible 
mice (Fig. 2E-F). This effect in resilient mice was more robust after a previous low-value water 
trial than a high-value sucrose trial, which may drive resilient mice to preferentially seek out 
sucrose rewards (Fig. S2A-B). We observed a similar phenomenon after reward consumption in 
the BLA (Post-reward), while in vCA1, there existed a general effect of stress. These results 5 
suggest that BLA neurons in resilient mice showed enhanced discrimination of reward identities 
both before and during reward consumption. 
 

 
Fig. 2. Enhanced representations of reward choice in stress resilient mice. (A) Schematic of 10 
SPT. (B) Trial-averaged firing rates in sucrose and water trials from example BLA cells, with 
respective auROC during Pre-reward (grey, -4 to -3s) and Post-reward (black, 0 to 1s). Scale 
bars: 1 spikes/ 1s unless otherwise stated. (C) In BLA, resilient group showed the highest 
fraction of selective neurons during both Pre- (Fisher’s exact tests, P < 0.0001) and Post-reward 
(Fisher’s exact tests, P < 0.001). In vCA1, both susceptible and resilient mice showed higher 15 
fraction of selective neurons than controls during Pre- (Fisher’s exact tests, P < 0.001) and Post-
reward (Fisher’s exact tests, P < 0.0001). (D) Schematic of population decoding of current and 
future reward choices. Linear support vector machine (SVM) classifier was trained to distinguish 
between water and sucrose trials. (E) In BLA, resilient mice showed higher decoding accuracy 
than chance during Pre-reward, and the highest decoding accuracy among all groups during Post-20 
reward (Kruskal-Wallis, P < 0.0001). (F) In vCA1, resilient mice showed higher decoding 
accuracy than susceptible mice during Pre-reward (Mann-Whitney, P = 0.045) and Post-reward 
(Kruskal-Wallis, P = 0.0011). Data are mean ± STD. # Significantly different from chance; * P < 
0.05; ** P < 0.01. 
 25 

Intention-specific states in BLA as a unique susceptibility signature 
We next examined the origins of anhedonic behavior in susceptible mice by analyzing the 
sequence of reward choices. We found that choices were not independent from each other, as the 
sequence could be described using a Markov model in which the probability of choosing water 
or sucrose depends on the choice in the previous trial. The Markov models of control and 30 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2023. ; https://doi.org/10.1101/2023.10.23.563652doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.23.563652
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

5 
 

resilient mice were similar, both exhibiting a higher propensity to switch from water to sucrose 
and tended to repeat a sucrose choice more often than susceptible mice (Fig. 3A-B, Fig. S2C-F). 
In contrast, susceptible mice tended to switch away from sucrose rewards and stay on 
consecutive water choices. Given this, we asked whether there were unique neural signatures of 
the intention to switch or stay when the four possible sequences of consecutive reward choices 5 
(water-water; water-sucrose; sucrose-water; sucrose-sucrose) were considered.  

Single cell analysis revealed that only in BLA of susceptible mice were there neurons that were 
differentially modulated based on the intention to switch or stay on the same reward as the 
previous trial (Fig. 3C-D). In addition, a population decoder could successfully distinguish 
between stay vs. switch trials in the seconds before reward was delivered in BLA of susceptible 10 
mice but not in the other groups (Fig. 3E-F) This was specific to BLA, as we did not observe 
striking switch vs. stay signatures at the population level in vCA1 (Fig. S2G).  

This led us to hypothesize that specific population activity patterns existed in the BLA of 
susceptible mice in the seconds preceding a switch or stay decision. We identified population 
hidden states in the 4s Pre-reward period using Hidden Markov Models (52–54) (HMM, Fig. 3G-15 
H, Fig. S2H) and confirmed that a linear decoder trained using inferred firing rates in HMM 
hidden states could most strongly distinguish between stay vs. switch trials in BLA of 
susceptible mice (and both vCA1 CSDS groups) (Fig. S2I-J), and the population representations 
of stay vs. switch were linearly separable in BLA of susceptible mice (Fig. 3I-J). Next, we 
identified hidden states that uniquely existed only in trials where mice either intended to stay or 20 
switch, which we termed intention-selective states (Fig. 3K-L, Fig. S2K, see Methods). We 
found that BLA of susceptible mice had a significantly higher fraction of these intention-
selective states during the 4s Pre-reward period than controls (Fig. 3L). Removing trials that 
contained these states reduced decoding accuracy of stay vs. switch trials to chance levels (Fig. 
3M) and altered the geometry of population representations of switch vs. stay trials (Fig. 3N). 25 
Considering only trials with intention-selective states improved the switch vs. stay decoding 
accuracy, while removal of random states did not impact decoding accuracy (Fig. 3M-N). 
Altogether, our results indicate that BLA neurons in susceptible mice evaluate future decisions 
with respect to their past choices (by representing switch/stay states), which may contribute to 
behavioral strategies that result in reduced number of sucrose rewards.  30 
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Fig. 3. Intention-specific states in BLA as a unique susceptibility signature.  (A) Schematic 
of switch/stay. (B) Susceptible mice had more water-water and sucrose-water trials (ANOVA, 
sucrose-sucrose, group: F2,57 = 14.84, P < 0.0001; water-water, group: F2,57 = 11.71, P < 0.0001; 
water-sucrose, group: F2,57 = 14.84, P < 0.0001; sucrose-water, group: F2,57 = 11.71, P < 0.0001). 5 
(C) Switch/stay trial-averaged firing rates from example cells. Scale bars: 1 spikes/ 1s unless 
otherwise stated. (D) Susceptible mice had more intention-selective neurons (Fisher’s exact test, 
P < 0.0001). (E) Schematic of switch/stay population decoding. (F) Susceptible mice showed 
greater-than-chance decoding accuracy. (G) Schematic of HMM. (H) Example spike rasters and 
hidden states. Neurons in red showed preferential firing during switch/stay trials. (I) Switch/stay 10 
could be decoded using HMM inferred firing rates in susceptible mice. (J) Switch/stay 
representations can be linearly separated in susceptible mice. (K) States that only occur in 
switch/stay trials are defined as intention-selective. (L) Susceptible mice had more intention-
selective states (Kruskal-Wallis, P = 0.045). (M) Bidirectional modulation of trials containing 
intention-selective states bidirectionally changed decoding accuracy in susceptible mice. (N) 15 
Switch/stay representations before and after removal of intention-selective states. Data are mean 
± SEM. # Significantly different from chance; * P < 0.05; ** P < 0.01. 
 

Distinct patterns of spontaneous activity in the BLA of susceptible mice 
We next asked whether distinct patterns of population activity could be detected in the BLA of 20 
susceptible or resilient mice, even without any overt stimuli or task demands. Altered resting 
state functional connectivity patterns in the AMY and HPC have been observed in depressed 
individuals, but the underlying neural dynamics remain unknown (55, 56). Mice were head-
fixed, mimicking a mildly stressful experience in human imaging studies, but no other stimuli 
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were provided. We identified general features shared among mice of the same group (control, 
susceptible, or resilient) by analyzing the geometry of neural representations (57, 58). The lack 
of behavioral labels makes it difficult to align the representations of different animals to compare 
their geometry. Hence we focused on the embedding dimensionality, which can be estimated 
without alignment (57, 58) (see Methods). This revealed a trend towards higher dimensionality 5 
in the BLA of susceptible mice compared to controls (Fig. S3A-E), suggesting a larger number 
of states visited, with each state spanning a different dimension. Quantification of states using 
HMM (Fig. 4A-C, Fig. S3F-L) demonstrated that in BLA, but not vCA1, susceptible mice 
showed a more distinct spatial structure of states than controls. Indeed, agglomerative clustering 
of these states revealed a significantly larger number of clusters in susceptible mice compared to 10 
control and resilient mice, suggesting that susceptible mice explored a greater number of distinct 
neural states. Consistent with this, average correlated BLA population activity across time was 
lower, and thus more variable, in susceptible mice (Fig. S3M-N). The greater number of distinct 
states in susceptible mice could not be attributed to an increased firing rate, which was lower in 
the BLA of susceptible mice compared to controls (Fig. S4O). Furthermore, across all mice, the 15 
number of distinct states was significantly correlated with behaviors used to assess anhedonia 
(Fig. 4D), suggesting a relationship between population hidden states in the BLA and classic 
readouts of anhedonia-related behavior.  

We next tested whether we could decode the group identity of individual animals, by training a 
classifier using neural features including firing rates (mean and standard deviation), PCA 20 
cumulative variance, and the fraction of agglomerated clusters across clustering thresholds. 
While each of these features alone could distinguish between control vs. susceptible mice to 
some extent (Fig. S3P), using all the feature sets in BLA, but not vCA1, allowed us to decode 
between all pairs of group identities with the highest accuracy (Fig. 4E, Fig. S3Q-R), with 
decoding of susceptible vs. control mice at 100% accuracy. When we visualized the geometry of 25 
the representations in individual mice, we found the greatest distance between control and 
susceptible mice in the BLA (Fig. 4F). Applying this analysis to the task period could also 
differentiate between control and susceptible mice (Fig. S4). Finally, we found that a decoder 
using these neural features during the stimulus-free pre-task period in BLA could better predict 
whether an animal was exposed to stress than a decoder using only behavioral features (Fig. 4G). 30 
This suggests that neural activity features in the BLA in the absence of any stimuli or task 
demands may be a more powerful biomarker for identifying a history of chronic stress than 
classic behavioral indices such as social avoidance and anhedonia-related behaviors. 
 

 35 
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Fig. 4. Distinct neural signatures of CSDS mice in the absence of task. (A) Schematic of 
analysis in pre-task. HMM was used to identify hidden states (S) and states similarity was assessed 
using agglomerative clustering. (B) Examples of states correlation heatmap from BLA of a control 
and a susceptible mouse and respective agglomerative clustering (dendrograms on right). (C) 5 
Susceptible mice had more distant hidden states in BLA (Mann-Whitney, control vs. susceptible 
P < 0.05 for all thresholds except 0; resilient vs. susceptible P < 0.05 for all thresholds except 0.4-
0.6). (D) Proportion of clusters (1-r threshold = 0.5) was correlated with animals’ behavior 
(Spearman’s correlation). (E) Mahalanobis decoder trained on all neural features (“All”) could 
decode group identity better than chance in BLA. Feature importance in decoding was examined 10 
by systematic removal of each feature (subsequent columns). (F) MDS of neural features in BLA 
showed that controls were most distinct from susceptible mice. (G) Mahalanobis decoder trained 
on neural features was better at distinguishing control vs. CSDS mice than behavioral features. 
Data are mean ± SEM. Chance distributions are 2xSTD around theoretical chance level. # 
Significantly different from chance; * P < 0.05. 15 

 
Rescue of dysfunctional vCA1-BLA activity and anhedonia by circuit-specific manipulations 

We next explored neuronal circuit mechanisms that could contribute to these population-level 
signatures of resilience and susceptibility in the BLA. Specifically, we asked if we could rescue 
behavioral and physiological phenotypes of susceptibility via manipulation of inputs to BLA. We 20 
targeted vCA1 as 1) it provides dense input to BLA, 2) CSDS produces changes in 
representations of reward choice and intended task strategies in vCA1 of all mice, which may 
reflect a general adaptation to stress (see Fig. 2E-F, Fig. S2I), and 3) resilience was positively 
correlated with the strength of communication between vCA1-BLA for sucrose vs. water choices 
during the Pre-reward period (Fig. 5A-B). To test whether manipulation of vCA1-BLA inputs 25 
may modulate signatures of susceptibility in the BLA to influence anhedonic behavior, we 
increased the excitability of vCA1-BLA neurons using the chemogenetic actuator hM3Dq (59, 
60) (Fig. 5C-D). We subjected mice to CSDS and recorded BLA and vCA1 activity and behavior 
in susceptible mice before and after injection of the hM3Dq activator clozapine-n-oxide (CNO).   
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vCA1-BLA activation increased vCA1 firing rates (Fig. S5A-B, K) and modified population 
activity patterns in vCA1 (Fig. S5C-J). During the sucrose preference task, this manipulation 
enhanced vCA1-BLA correlations for sucrose vs. water choices during the Pre-reward period 
(Fig. 5E). In addition, we found that vCA1-BLA activation increased the decoding accuracy of 
reward choice Post-reward in both BLA and vCA1(Fig. 5F-G), a signature of enhanced reward 5 
choice representation that was associated with resilience (see Fig. 2E-F).  

We next asked whether manipulation of the vCA1-BLA pathway may reduce the occurrence of 
the unique intention-specific states we observed in the BLA of susceptible mice. Replicating our 
previous results, we found that during the saline period, we could decode stay vs. switch trials in 
these susceptible mice (Fig. 5H-J, Fig. S5L-M), however, activation of vCA1-BLA brought 10 
decoding accuracies to chance levels, changed the geometry of representations in the BLA such 
that switch and stay trials could no longer be linearly separated (Fig 5J), and decreased the 
fraction of intention-specific states (Fig. 5K). In other words, activation of vCA1-BLA pathway 
was able to reverse this population-level susceptibility signature in BLA.  

Finally, we found that vCA1-BLA activation rescued behavioral indices of anhedonia, as it 15 
increased sucrose preference (Fig. 5L), increased lick rate discrimination index (Fig. S5N), and 
enhanced the proportion of sucrose stay trials (Fig. S5O-Q). No behavioral differences were 
observed between saline and CNO periods in mice infused with the control mCherry virus (Fig. 
S5R). In summary, these results show that activating vCA1-BLA pathway rescued both aberrant 
population dynamics in the BLA of susceptible mice and associated behavioral signatures of 20 
anhedonia (Fig. 5M).     
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Fig. 5. Rescue of dysfunctional vCA1-BLA activity and signatures of anhedonia by circuit-
specific manipulations. (A) Schematic for analyzing vCA1-BLA interactions. (B) DBLA-vCA1 
correlation Pre-reward was significantly correlated with animals’ behavior (Pearson correlation). 
(C) Schematic for chemogenetic activation of BLA-projecting vCA1 neurons. (D) 
Representative image of BLA-projecting vCA1 neurons transfected with hM3Dq-mCherry. (E) 5 
DBLA-vCA1 correlation was enhanced in CNO vs. saline (paired t-test, t4 = 4.22). (F and G) 
CNO increased decoding accuracy of current reward choice compared to saline (Mann-Whitney, 
P < 0.0001) in (F) BLA and (G) vCA1 (Mann-Whitney, P < 0.0001). Data are mean ± STD. (H 
and I) CNO reduced decoding accuracy of switch/stay trials to chance level in (H) BLA and (I) 
vCA1. (J) CNO altered the geometry of switch/stay representations such that they can no longer 10 
be easily distinguished. (K) CNO reduced the fraction of intention-selective states in BLA 
(Mann-Whitney, P = 0.043). (L) CNO increased sucrose preference (paired t-test, t20 = 2.39). 
(M) Summary schematic on the main findings. Data are mean ± SEM unless otherwise stated. # 
Significantly different from chance; * P < 0.05; ** P < 0.01. 
 15 

Discussion 
Our study uncovers distinct stress resilience and susceptibility signatures in BLA population 
activity. Using Neuropixels recordings during both task-free and free-reward-choice periods and 
leveraging complementary analytic approaches, we identified novel population dynamics that 
underlie distinct features of the stress-induced anhedonic state. Furthermore, we successfully 20 
reversed behavioral and neural signatures of anhedonia through targeted modulation of the 
vCA1-BLA circuit. 
By analyzing population dynamics during the sucrose preference test, we discovered a resilience 
signature characterized by heightened reward choice representations in the BLA before and 
during reward consumption. This enhanced reward choice perception or sensitivity may play a 25 
crucial role in reinforcing the behavioral choice that leads to the more rewarding option (i.e., 
choosing the sucrose reward) (61, 62), perhaps as a mechanism for adapting and coping with the 
experience of CSDS that ultimately results in a robust behavioral preference for sucrose. In 
contrast to resilient mice, susceptible mice exhibited reduced representations of current and 
future reward choices in the BLA, which may lead to under-estimation of the choice associated 30 
with the more rewarding option (62). Moreover, in the BLA of susceptible mice, we observed 
unique representations that reflect the intention to switch or stay on the previously chosen 
reward. This heightened evaluation of future choices with respect to the past in the BLA of 
susceptible mice is reminiscent of rumination-like states commonly observed in individuals with 
depression, such as repetitive thinking of past choices and/or future decisions (63, 64).  35 

By analyzing the neural activity patterns in the absence of any task or stimuli, we found an 
enhanced exploration of distinct neural states in the BLA of susceptible mice. This may reflect 
the emergence of intrusive activity patterns in the BLA, like intrusive thought patterns observed 
in depressed patients (65, 66). Notably, we found that features of neural activity in the BLA 
during a task-free period were more effective than behavioral readouts in distinguishing between 40 
control mice and those with a history of CSDS. This suggests the intriguing possibility that 
resting-state activity patterns in the BLA hold significant potential as a powerful biomarker for 
predicting individuals who have experienced a stressful event.  

Finally, susceptible mice showed reduced vCA1-BLA correlations during higher value sucrose 
reward choice trials, potentially driving anhedonic behavior. Consequently, chemogenetic 45 
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activation of BLA-projecting vCA1 neurons in susceptible mice increased inter-regional 
communication between BLA and vCA1, increased representations of current reward choice in 
both BLA and vCA1, reduced the rumination-like over-representation of the intention to stay or 
switch in the BLA, and reduced anhedonia-related behavior. Our data suggests that vCA1 may 
encode an adaptive coping response to stress, as reward choice representations were enhanced in 5 
both resilient and susceptible mice in comparison to controls. This information from vCA1 may 
be funneled to the BLA via direct vCA1-BLA projection to help further distinguish between 
resilient and susceptible mice in the BLA. Specifically, in resilient mice, as BLA is more 
effectively interacting with vCA1, it may be incorporating this adaptive stress response from 
vCA1 to generate signatures of resilience, such as enhanced reward choice representations. In 10 
contrast, in susceptible mice, this vCA1-BLA interaction is weaker, thus, BLA may not be 
efficiently using this adaptive information from vCA1, resulting in neural activity patterns that 
promote susceptibility, such as reduced representations of reward choices and emergence of 
intention-selective states.  

While dysfunction in dopaminergic systems has been implicated in motivational changes in 15 
depression and chronic stress (3, 67–71), this work provides crucial evidence for a role for the 
vCA1-BLA circuit in modulating stress-induced behavioral phenotypes. By demonstrating that 
targeting the vCA1-BLA circuit could normalize neural dynamics associated with susceptibility 
and promote those associated with resilience in the BLA, our findings shed light on how 
dysfunction in this circuit may contribute to stress-induced maladaptive states. Moreover, these 20 
results highlight the vCA1-BLA circuit as a promising target for neuromodulation in mood 
disorder treatments and open new avenues for potential therapies to address stress-induced 
pathologies more effectively.  
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Materials and Methods 25 
Mice 

All procedures were conducted in accordance with the NIH Guide for the Care and Use of 
Laboratory Animals and institutional guidelines. Adult (8-12 weeks old) male and female 
C57BL/6J mice were supplied by Jackson Laboratory. Adult (5-6 months old) CD1 retired male 
breeder mice were supplied by Charles River. All mice were kept on 12-hour light/dark cycle, 30 
and all experiments were conducted during the light phase. We performed recordings in 60 mice 
for the original dataset, including 45 CSDS mice (30 males, 15 females) and 15 control mice (10 
males, 5 females). A separate cohort of 41 CSDS mice (males) underwent chemogenetic 
manipulation experiments. Twenty-three of the mice received AAV-DIO-hM3Dq virual micro-
infusion and 18 mice received AAV-DIO-mCherry infusion. From the hM3Dq group, we 35 
performed recordings in 7 of the susceptible mice.  
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Surgery 
Head bar and craniotomy surgery 

One week prior to lick training, head bar surgeries were conducted on all mice (8-9 weeks 
old). Similar to previously described protocol (46), mice were anesthetized with 1.5% isoflurane 5 
with O2 flow rate of 1 L/min, and head-fixed in a stereotaxic frame. A custom-made titanium 
head bar was then attached to the skull using Metabond adhesive cement (Parkell, Edgewood, 
NY). Possible recording sites (see Neuropixels section) were stereotaxically marked using a 
permanent marker on the skull surface, and skull was covered using silicon (Smooth-On, 
Macungie, PA). Three days prior to Neuropixels recording, craniotomy surgery was performed, 10 
where under anesthesia, craniotomies were made at previously marked coordinates. Skull surface 
was covered with Kwik-Sil (World Precision Instruments, Sarasota, FL).  

 
Viral micro-infusion surgery 

For mice that underwent chemogenetic manipulations, adult males (8-9 weeks old) received 15 
viral micro-infusion in the same surgery as head bar attachment, similar to previously described 
protocol (46). Specifically, AAV8-hSyn-DIO-hM3D(Gq)-mCherry (Addgene, 44361-AAV8, 2.9 
x 1013 vg/ml) or AAV8-hSyn-DIO- mCherry (Addgene, 50459-AAV8, 1.0 x 1013 vg/ml) was 
micro-infused in vCA1 bilaterally (500 nL per hemisphere, -3.52 mm AP, ±3.1 ML, -4.2 [150 
nL], -4.1 [200 nL] and -4.0 [150 nL] DV, from bregma according to Paxinos and Franklin 20 
[2011]), and AAV2retro-CAG-Cre (UNC Vector Core, Ed Boyden’s stock,  4.1x1012 vg/ml) was 
micro-infused in BLA bilaterally (500 nL per hemisphere, -1.80 mm AP, ±3.1 ML, -5.0 [150 
nL], -4.8 [200 nL] and -4.6 [150 nL] DV). Viral vectors were delivered using Nanoject 3 
(Drummond Scientific, Broomall, PA). The needle was held in place for >5 min after infusion at 
each DV, and for 10 min after the last DV. Following viral micro-infusion, head bar was 25 
attached to the skull as described above.  

 
Behavior 
Chronic social defeat stress (CSDS) 

CSDS was conducted similar to previously established protocol (6). Briefly, CD1 male mice 30 
were singly housed upon arrival for >1 week and were then pre-screened for aggression over 3 
consecutive days. Each day, a CD1 mouse was placed in a cage with a new screener BL/6 mouse 
for 3 min. An aggressive CD1 mouse is defined as one that attacked the BL/6 mouse within the 
first min over a minimum of 2 consecutive days. Only aggressive CD1 mice were used in defeats 
and social interaction tests. Defeats occurred over 10 days, where each day, a BL/6 mouse was 35 
introduced to a novel CD1 mouse’s cage for 10 min. Defeats were terminated early if severe 
injuries on BL/6 mice were observed. After 10 min, a clear plastic divider with perforations was 
placed in the middle of the defeat cage for 24 hours, to physically separate the BL/6 and CD1 
mice while allowing visual and odor cues to transmit and reinforce the defeat experience during 
co-housing. After the 10th day defeat, BL/6 mice were singly housed in new cages (without 40 
CD1s) for 24 hours prior to social interaction test. For female defeats, female BL/6 mice were 
first coated with urine from other aggressive CD1 male mice (not used in defeats) prior to being 
introduced to the defeat CD1 mouse cage (72), in order to minimize mounting behavior and 
maximize defeats. Female defeats were terminated early if mounting was observed. 

 45 
Social interaction test 

Social interaction test took place 1 day after termination of CSDS. BL/6 mice were 
habituated to the social interaction test room for 1 hour prior to test. The test was performed 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2023. ; https://doi.org/10.1101/2023.10.23.563652doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.23.563652
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

20 
 

under red light (10 lux) in a test arena (custom made, 42 cm (w) × 42 cm (d)× 42 cm (h)) in a 
sound attenuation chamber. During the first phase of the test, the BL/6 mouse was introduced to 
the test arena with an empty enclosure (10 cm (w) × 6.5 cm (d) × 42 cm (h) at one end for 2.5 
min, and its activity patterns were tracked using Ethovision (Noldus Information Technology, 
Leesburg, VA). At the end of 2.5 min, the mouse was placed back in its home cage, and the 5 
empty enclosure was replaced with a second enclosure containing a novel aggressive CD1 that 
had not been used in defeats. The BL/6 mouse was put back in the test arena for another 2.5 min. 
Social interaction ratio, as a measure for social avoidance, was calculated as the time spent in the 
interaction zone (14 cm × 24 cm) with the aggressor present vs. absent. The lower the social 
interaction ratio, the more socially avoidant the animal was.  10 

 
Head-fixed sucrose preference test 

Following recovery from head bar surgery, mice were habituated to the experimenter and 
the head-fixed setup for 15 min a day for a week. After habituation, mice were water-restricted to 
~85-90% their ad lib body weight and were trained for 3 days to lick on the custom designed 15 
dual-spout head-fixed reward delivery apparatus. On day 1, mice were introduced to 1 lick spout, 
where sucrose rewards (10% sucrose, ~3.5 ml each) were intermittently delivered upon licking 
(i.e., reward were lick-contingent) with 8 seconds inter-trial interval (ITI), with maximum 150 
rewards per session. Sucrose rewards were delivered using a solenoid-gated gravity feed. Licks 
were detected using a piezo element (SparkFun, Boulder, CO). Stimulus delivery and sensor 20 
reading were controlled using a custom Arduino MEGA board and recorded using CoolTerm 
software. On day 2 and 3, mice were introduced to 2 lick spouts, one on each side of the mouse, 
separated by ~50 degrees. Sucrose rewards were delivered in both spouts upon licking with 8 
seconds ITI. The goal was to teach mice that rewards were delivered from both spouts. Thus, if a 
mouse showed preference for spout on one side, that spout was temporarily removed so the 25 
mouse can learn to lick from the other spout. Once the animal showed similar preference for both 
spouts, lick training was completed and pre-defeat sucrose preference test (SPT) was initiated on 
the following day. SPT occurred over the course of 2 consecutive days, where one spout 
delivered water and the other delivered sucrose. Rewards were delivered upon licking with 8 
seconds ITI and maximum 150 rewards in total per day. The spout designation was randomized 30 
across mice on day 1 and counterbalanced on day 2. Sucrose preference was calculated as the 
averaged % sucrose rewards obtained across 2 days. Upon completion of day 2 of pre-defeat 
SPT, mice were taken off water restriction and housed in social defeat room for 3 days before 
CSDS began. Post-defeat SPT was performed using the same protocol, with the addition of 
Neuropixels recording. Sucrose preference post-defeat was used for all behavioral analysis. 35 

 
Neuropixels recording and data pre-processing 
Recording 

Mice were head-fixed to the SPT apparatus without lick spouts present. Kwik-Sil was 
removed from skull surface. Prior to insertion, Neuropixels 1.0 probes (IMEC, Heverlee, 40 
Belgium) were first coated with DiI, DiO, or DiD dyes (ThermoFisher Scientific, Waltham, MA) 
and allowed to dry. Probes were inserted at ~1 mm/min to the target coordinate using Sensapex 
manipulators (Oulu, Finland). Possible probe targets and their coordinates are as follows: 
amygdala (-1.71 mm AP, -0.28 mm ML, -6.5 mm DV, at 31.3 degrees ML), ventral 
hippocampus (-3.9 mm AP, -2 mm ML, -4.5 mm DV, at 25.8 degrees ML), frontal cortex (+1.77 45 
mm AP, 0 mm ML, -5.7 mm DV, at 9 degrees ML; +2.60 mm AP, -0.5 mm ML, -4.5 mm DV, at 
9 degrees ML), and midline thalamic and hypothalamic regions (-3.80 mm AP, 0 mm ML, -5 
mm DV, at 7.6 degrees ML; -1.90 mm AP, -0.15 mm ML, -4.3 mm DV, at 4.4 degrees ML). One 
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or two probes were inserted per session per mouse. Simultaneously recorded probes were coated 
in the same color of dye but spaced at least several hundred microns apart to allow for 
unambiguous identification. Different colors of dyes were used across days to help differentiate 
probe tracks. After a probe reached targeted DV, it was left in place for 10 min prior to the start 
of recording and SPT. Neuropixels action potential signals were recorded using Neuropixels 5 
acquisition system and SpikeGLX software, at 30,000 Hz with gain = 500. Behavioral signals 
were recorded using a separate data acquisition board (National Instruments, Austin TX), along 
with a synchronization signal that was also recorded by Neuropixels to help synchronize clocks 
between different data streams. After each session of SPT, probes were slowly removed from the 
brain and skull was covered with Kwik-Sil. Probes were cleaned using Tergazyme solution (1%, 10 
Alconox) overnight and rinsed using deionized water before reusing or storage.  

 
Histology and probe track registration 

At the end of experiments, mice were transcardially perfused with 1x PBS followed by 4% 
paraformaldehyde solution. Brains were fixed overnight at 4�C, and then transferred to 30% 15 
sucrose solution for 48 hours. Brains were sectioned coronally using a microtome (Leica 
SM2000) at 50 um thickness and mounted on glass slides with Fluoromount G with DAPI 
(Southern Biotech, Birmingham, AL). Images were obtained using a confocal microscope 
(Nikon Ti2-E Crest LFOV Spinning Disk/ C2 Confocal) with 20X objective. Probe tracks were 
traced using the AllenCCF toolbox (https://github.com/cortex-lab/allenCCF).   20 

 
Spike-sorting 

Neuropixels action potential signals were pre-processed and spike-sorted offline using 
Kilosort 2 (73), and after sorting, the clusters were manually validated using Phy (74). Only 
well-isolated clusters (putative single units that are classified as “Good” using Phy) were 25 
analyzed. All other clusters, including multi-unit activity and noise, were not analyzed.  
 
Data analysis 

Animals were allowed to freely choose reward types after 8s ITI had passed between trials, 
by licking at the spout of their choice. Reward deliveries were lick-contingent. Trial types were 30 
defined as ± 4s time window around the time of reward delivery. For all analysis, only mice with 
at least 5 neurons in the region of interest were used.  

 
Behavioral data analysis 
Behavioral classification of mice 35 

The relationship between sucrose preference and social interaction ratio was assessed using 
Pearson’s correlation. To classify CSDS mice into subtypes, we applied unsupervised K-means 
clustering using both behavioral metrics, sucrose preference and social interaction ratio. The 
optimal number of clusters was determined by evaluating cluster numbers from 2 to 10 and 
maximizing the Silhouette score.  40 

 
Lick analysis 

Lick rasters were generated by binning licks using 0.02s bin size. Lick rates were calculated 
using 0.1s bin size and averaged across trials per mouse for each reward type. Lick rate 
discrimination index (DI) was calculated as the difference between lick rates for sucrose vs. 45 
water trials divided by the sum of the two. 

To take into account reward history and assess how it affects current behavior, we further 
divided sucrose and water trials into sucrose/sucrose (SS), water/sucrose (WS), water/water 
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(WW), and sucrose/water (SW) trials, (previous/current reward). The first trial of each session 
was discarded as it had no prior trial. In order to assess the probability of each trial type 
independent of the animal’s overall sucrose preference, we normalized the number of trials to the 
total number of previous trials of a specific type. For example, we defined the overall transition 
probability from a water trial to a sucrose trial as P(WS) = P(WS) / (P(WW) + P(WS)), and from 5 
a sucrose trial to a sucrose trial as P(SS) = P(SS) / (P(SW) + P(SS)), where P(XY) is the transition 
probability from reward X to reward Y. We normalized the transition probabilities such that 
P(WW)+P(WS) = 1, and P(SS)+P(SW)=1. Using this normalization, if P(SW) is not significantly 
different from P(WW), this would suggest that the current water reward choice is independent of 
the previous reward, because of the probability of switching from sucrose or staying on water is 10 
the same; otherwise, the current reward choice is dependent on the previous reward (i.e., reward 
choices could be modeled as a first-order Markovian process).  

We also computed the proportion of each of the 4 trial types normalized to the total number 
of trials per session, to assess how much each trial type contributes to the overall session. In this 
case, the % of trials of each of the 4 trial types were computed per session and averaged across 15 
sessions for each mouse. As the number of trials may be influenced by each animal’s innate 
preference for different rewards, we computed the chance probability of the occurrence of each 
trial type by calculating the joint probability of the previous and current trial. For example, 
chance P(SW) = P(S) x P(W). The number of trials was then subtracted by the chance level in 
each mouse (“Number of trials chance removed”). SS and WW trials were combined when 20 
analyzing stay trials, and SW and WS trials were combined when analyzing switch trials. The 
preference between stay and switch trials in each mouse was calculated as % stay trials - % 
switch trials. To quantify the number of consecutive trials, we first obtained the average number 
of consecutive trials per trial type (sucrose or water) per session and then averaged across 
sessions for each mouse.  25 

 
Decoding group identity using behavioral features 

To examine whether group identity could be decoded using behavioral data, we defined a 
Mahalanobis-like binary decoder. Specifically, for each mouse, we considered 4 behavioral 
features: lick rate DI during Pre-reward, Post-reward, sucrose preference, and SI score. 30 
Considering two groups at a time, we defined and constructed a Mahalanobis binary decoder to 
assign a single testing mouse to one of the two groups in the behavioral feature space. The input 
to the binary classifier consisted of an N x F training matrix and a 1 x F testing matrix, where N 
represented the total number of training mice between the two classes, and F = 4 represented the 
total number of features. In each cross-validation (CV), we first balanced the number of mice in 35 
each group by randomly subsampling the minimum number of mice between the groups. Next, 
we randomly selected one mouse as the testing sample and used the remaining mice as the 
training set, for a total of 1000 CVs. We defined a Mahalanobis-like distance in the feature space 
as the Euclidean distance between the testing mouse and the centroid of the training groups, 
divided by the variance along the distance direction. The testing sample was assigned to the 40 
group identity with the minimum Mahalanobis-like distance. The performance of the decoder 
was evaluated by calculating the fraction of correct classifications out of the total 1000 CVs, and 
the entire procedure was repeated for all possible pairs of the three groups (i.e., control, 
susceptible, and resilient mice).  

 45 
Single neuron analysis 
Firing rate 
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For task period, spike trains were aligned at the time of reward delivery (time 0) and 
neurons within the same region were pooled across animals of the same group to construct 
pseudo-populations. Only neurons with at least 10 trials per trial type (sucrose and water) were 
included. For peri-stimulus time histograms, spikes were binned at 10ms resolution, z-scored to -
Pre-reward (-1 to 0s), and smoothed with a 50ms moving average filter. For analysis of raw 5 
firing rates, spikes were binned at 500ms resolution. 

 
Reward-modulated neurons 

Analysis was performed using pseudo-population and only neurons with at least 10 trials 
per trial type (sucrose and water) were included. Reward-modulated neurons were identified 10 
based on Wilcoxon rank-sum test, comparing the distribution of firing rates during 1s Post-
reward (0 to 1s) vs. 1s Pre-reward period (-4 to -3s) across trials. A cell is deemed reward-
modulated if Post-reward epoch is significantly different from Pre-reward after false discovery 
rate (FDR) correction across all recorded neurons, with a significance threshold of P < 0.05. A 
Chi-squared test was used to perform statistical comparisons between fractions of reward-15 
modulated neurons in CSDS vs. control mice for sucrose and water trials.  

 
Intention-modulated neurons 

Analysis was performed using pseudo-population and only neurons with at least 10 trials 
per trial type (switch and stay) were included. Intention-modulated neurons were identified using 20 
a similar method as reward-modulated neurons. Mice with less than 5 neurons in regions of 
interest were excluded. In this case, a cell is deemed intention-modulated if the distribution of 
firing rates during the 4s pre-reward period (-4 to 0s) in switch trials is significantly different 
from stay trials, as identified using Wilcoxon rank-sum test followed by FDR correction across 
all neurons in that group (P < 0.05). As the fraction of neurons was small and did not meet the 25 
criteria for using Chi-squared test, Fisher’s exact tests were used to perform statistical 
comparisons between % of intention-modulated neurons across groups.  

 
auROC 

Analysis was performed using pseudo-population and only neurons with at least 10 trials 30 
per trial type (sucrose and water) were included. Mice with less than 5 neurons in regions of 
interest were excluded. Reward-choice-selective cells were identified (75, 76), and the 
magnitude of the selectivity was quantified, using the area under the receiver operating 
characteristics (auROC) method, which compares single-neuron firing rates between trial types, 
across levels of response thresholds for each time bin. Spikes were binned at 500ms resolution. 35 
Shuffled distributions were computed for each time bin by randomly shuffling trial type 10 times 
per neuron. A neuron is deemed reward-choice-selective if its auROC is > 2 x STD of shuffled 
distribution for that neuron. The fraction of selective neuron in a region was calculated as # of 
selective neurons / total # of neurons. Differences in the fraction of selective neurons across 
groups were assessed using Fisher’s exact tests.  40 

 
Population analysis 
Analysis of embedding dimensionality 

Principal component analysis (PCA) was used to evaluate the embedding dimensionality of 
population activity of simultaneously recorded neurons over time. The method aims to identify 45 
how much variance of the population representation in the firing rate space is accounted for by 
each principal component. We chose this method because the pre-task period lacks behavioral 
labels. PCA has the advantage of allowing us to compare neural data between animals because 
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the method is invariant for rotations and global stretching, transformations normally needed to 
align a neural representation of one subject into another. We examined the activity of each 
neuron in 1s bins during the 6 min time window (min 2-8) within the 10 min pre-task recording 
period, resulting in 360 bins. The ensemble activity across these bins can be represented as a 
geometrical object in the firing space, with each axis representing the firing rate of a neuron and 5 
each point representing the ensemble's activity in a time bin. We calculated the embedding 
dimensionality of this geometrical object for each mouse. We only included mice with at least 5 
simultaneously recorded neurons in the region of interest during the pre-task recording. We 
randomly selected 5 neurons for each mouse and calculated the z-scored firing rate matrix N x T, 
where N is the number of neurons, and T is the number of time bins. We applied PCA to this 10 
matrix and determined the cumulative curve of the variance explained by each principal 
component (PC). We repeated this procedure 1000 times and averaged the results across the 
subsamples for each mouse. Our goal was to compare cumulative variance curves across groups 
and determine if a group had a higher cumulative value at M PCs (M £ 5), indicating a lower 
dimensionality of the geometrical object. We subsequently used the cumulative variance values 15 
for the first 3 PCs as features to decode the group identity. 

We also assessed the Participation Ratio (PR), which is a normalized measure of 
dimensionality based on the full distribution of PCA eigenvalues (i.e., how much variance is 
explained by each principal component), and it is defined as follows, 

PR = (∑#$%,'	)#)
!

∑#$%,'	()#!)
 20 

where λi are the eigenvalues of the covariance matrix of the neural acidity, and N = 5. If 
only one eigenvalue explains all the variance (λi ≠ 0 for i = 1 and λi = 0 for all i ≥ 2), then PR = 
1. On the other hand, if all eigenvalues are equal, the dimensionality is maximum, PR = N (77, 
78). 

During the task period, the same analysis was repeated during the 1s of Pre-reward and 25 
Post-reward periods, using z-scored firing rate with 0.2s bins (5 bins for each period).    

 
Hidden Markov Model 

We used hidden Markov models (HMMs) to identify patterns of population activity in the 
time series, where each pattern corresponds to a specific neural state that is not directly 30 
measurable (52, 54, 79). We fitted an HMM separately for each mouse for the pre-task and task 
period. For the DREADD dataset, HMMs were fitted for saline and CNO periods of each mouse 
separately. To perform model fitting, we employed the software framework developed by the 
Linderman Lab (https://github.com/lindermanlab/ssm). 
To prepare the data for the HMM analysis, we binned the 6 min pre-task recordings of each 35 
session into 1s bins, resulting in 360 bins. We computed the spike count of each neuron in each 
bin. The input data for the HMM consisted of an N x T matrix, where N represents the total 
number of simultaneously recorded neurons in the session, and T represents the total number of 
time bins. 

For the analysis during task in the Pre-reward and Post-reward periods, we computed the 40 
spike count in 0.2s time bins. We fitted separate HMMs for the Pre-reward and Post-reward 
periods for sucrose and water trials. To accomplish this, we concatenated the M trials within a 
single session and arranged the input data in an N x T x M matrix, where T = 5. We chose bin 
size of 0.2sec, because this bin size balanced the inference of maximum possible transition states 
and total spike count used to fit HMMs. 45 

For decoding of switch vs. stay using HMM states, we focused on the 4s pre-reward period. 
Spike counts were binned using 1s bin size, and concatenated across the 4s window of all trial 
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types. This resulted in an N x T x M input matrix, where T = 4, and M represents the total number 
of recorded trials in the session. Consistent with previous analyses, we retained only sessions 
with at least 5 simultaneously recorded neurons. 

Given the recorded (observed) spike count over time, we modeled the neuronal activity as a 
Poisson process, where the mean value depends on the current neural state. We represented the 5 
probability of observing the spike count vector n(t) of N neurons at time bin t, given the hidden 
neural state St = j, as a multivariate Poisson process: P (nt | St = j) ~ Poisson(Λ; nt). Here, Λ = 
{λ1, λ2, ... λN}, and λi represents the estimated mean activity for the ith neuron in state j. The 
vector Λ corresponds to the column of the N x K "emission matrix" E, which provides the firing 
rates or activation probabilities of observing a specific neuronal pattern when the population 10 
activity is in a particular state. 

We assumed the dynamics of the neural states to evolve according to a first-order 
Markovian process, where the probability of transitioning from one state to another depends only 
on the current state. This process is summarized by the K x K "transition probability” matrix T. 
Additionally, we incorporated an initialization vector A, which provides the probability of 15 
starting in each state. The HMM was fully described by the set of parameters {E, T, A}, which 
were inferred by fitting the model to the recorded neuronal spike counts (80). We used the 
Baum-Welch expectation-maximization algorithm to update the model parameters and maximize 
the likelihood of the observed data. For each time series, we fitted 5 models with a maximum of 
100 iterations for each value of the total number of states ranging from 2 up to 50, using 20 
randomized initial conditions. The model with the smallest Akaike Information Criterion (AIC) 
score was retained as the best model for further analyses (52). Subsequently, we used the Viterbi 
algorithm to estimate the most likely sequence of states over time.  

 
Agglomerative clustering analysis 25 

To better characterize the spatial structure of the hidden states, we examined the pairwise 
correlation between the inferred activity of the states. For state 1 with an activity vector X = (x1, 
x2, ..., xN), where xi represents the activity of neuron i, and state 2 with an activity vector Y = (y1, 
y2, ..., yN), we computed the Pearson correlation coefficient ρ(X,Y) to assess the distance  between 
the states in the neuronal activity space. We calculated the correlation coefficients for all pairs of 30 
states and stored them in an N x N correlation matrix K. Subsequently, we performed 
agglomerative clustering on the correlation matrix. 

Specifically, we defined a new distance matrix D as 1 - K, where 1 is an N x N matrix of 
ones. This matrix served as the input to the agglomerative clustering algorithm, which iteratively 
combines states to define new clusters according to the pairwise distance.  The algorithm 35 
initialized each state as a separate cluster with minimum distance (maximum correlation) and 
iteratively merged two clusters v and u with the smallest distance into a new cluster. The new 
distance d assigned to the agglomerated clusters was defined as d(u,v) = max(dist(u[p], v[q])), 
where p and q represent all the points in the merged clusters u and v, also known as Farthest 
Point Algorithm. Agglomerative clustering has the advantage of producing a hierarchical 40 
structure of clusters, which we represented as a dendrogram. This hierarchical representation 
allowed us to examine the relationships and similarities between states, specifically how neural 
states may be nested differently within large clusters in different groups. Importantly, 
agglomerative clustering does not require any assumption regarding the total number of clusters. 
It iteratively merges the closest states and clusters until all states are merged into one final 45 
cluster. We performed the clustering analysis separately for each mouse, visualizing the results 
with a dendrogram that summarizes the merging of clusters at different levels of distance, 
ranging from 0 (original states) to 1 (a single cluster). 
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After examining the clusters, we counted the total number of clusters at different levels of 
distance, or thresholds, where the higher the levels of distance, the lower the number of clusters, 
until reaching only one cluster at the highest distance. We assessed the curves of the number of 
total clusters and the proportion of total clusters retained relative to the total number of states as 
a function of thresholds. Comparing these curves between two groups, a higher number of states 5 
at the same threshold value indicates a greater degree of dissimilarity among the inferred states. 
We retained the proportion of total clusters along these curves from a threshold of 0.1 up to 0.5, 
resulting in a total of five features that were subsequently used in the decoding of group identity. 
We applied the clustering analysis to the pre-task activity using the previously inferred states 
described in the "Hidden Markov Model" section, as well as to the Pre-reward and Post-reward 10 
task periods for water and sucrose trials separately. 

 
Correlation of population activity across time 

To examine how variable population activity was across time during the pre-task period, we 
performed Pearson’s correlation on population vectors of neuron firing rates across all time bins 15 
(1s bins). The correlation values were then averaged to assess differences between groups.  

 
Decoding group identity using neural features 

This analysis aimed to decode the group identity (i.e., control, susceptible, or resilient, or 
saline vs. CNO for DREADD data) on a single-mouse basis by analyzing the pre-task activity, 20 
where no behavioral labels were available. As described in the " Analysis of embedding 
dimensionality " section, the pre-task activity can be represented as a geometrical object in the 
firing space, with each axis representing the firing rate of a neuron and each point in the space 
representing the activity of the neuronal ensemble in each time bin. We sought features that 
characterized the representational object and were invariant to rotations and scaling 25 
transformations, or a subset of these transformations, ensuring shape invariance of the object. 
We included only mice with at least 5 neurons simultaneously recorded during the pre-task 
period. For each mouse, we computed the cumulative variance explained across the principal 
components (PCs) (see "Analysis of embedding dimensionality" section for more details). We 
considered the cumulative values of the first three PCs as features for decoding. Following the 30 
inference of hidden states and the clustering analysis, we calculated the proportion of clusters 
retained at different thresholds and extracted the values at five distinct thresholds (see 
"Agglomerative Clustering Analysis" section). Additionally, we computed the mean and 
standard deviation of the spike count as the last two features. All of the neural features were 
computed using 1s bins to optimize the final decoding performance. Overall, we assessed a total 35 
of 10 neural features for each mouse. 

We used the same Mahalanobis binary decoder procedure as previously described in the 
“Decoding group identity using behavioral features” section. Specifically in this case, the input 
to the binary classifier consisted of an N x F training matrix and a 1 x F testing matrix, where N 
represented the total number of training mice between the two classes, and F = 10 represented 40 
the total number of features. Prior to running the classification algorithm, we preprocessed the 
input matrices by applying a Min-Max Scaler to the mean and standard deviation of the spike 
count, ensuring that all features were scaled between 0 and 1 (because the PC cumulative 
variance and fraction of HMM clusters are defined between 0 and 1 by construction). 

The same decoder procedure was also applied during the Pre-reward and Post-reward 45 
periods of the task. For the decoding using vCA1 activity, the training set was defined as 20% of 
the total number of mice due to the initial larger sample size.  
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Population decoding 
Similar to previously described method (46), a linear support vector machine (SVM) 

classifier was trained to classify patterns of activity into two discrete categories. Results are 
reported as the generalized performance of the decoder using cross-validation with 80/20 
training/testing split. Patterns of activity are defined as the mean firing rate during 0.5 s non-5 
overlapping time bins. Pseudo-population recordings were generated by combining all neurons 
within the same region and the same group. As it is well known that neural activity in previous 
trials could strongly influence activity in current trials (81), for all pseudo-population decoding 
analyses, we balanced the number of trials of each trial type by taking into account both the 
previous and current trial types. In other words, we have equal numbers of water/water, 10 
sucrose/sucrose, water/sucrose, and sucrose/water trials (previous/current trials, respectively). 
Only neurons with at least 8 trials per each of the 4 trial types were included.  

To decode current reward, we combined equal numbers of water/water and sucrose/water 
trials for water trials, and similarly, equal numbers of sucrose/sucrose and water/sucrose trials for 
sucrose trials. To decode previous reward, we combined equal numbers of water/water and 15 
water/sucrose trials for water trials, and similarly, equal numbers of sucrose/water and 
sucrose/sucrose trials for sucrose trials. To decode intention (stay vs. switch), we combined equal 
numbers of sucrose/sucrose and water/water trials for stay trials, and similarly, equal numbers of 
sucrose/water and water/sucrose trials for switch trials.  

As each group may have different number of cells and trials, we used subsampling 20 
procedures to randomly subsample cells (60 neurons for both BLA and vCA1), and within those 
cells, randomly subsample trials equal to the group with the smallest number of trials. The 
resulting dataset was used to train SVM and obtain cross-validated decoding accuracies. For each 
set of subsampled cells, decoding accuracies across random subsampling of trials (repeated 10 
times) were averaged to obtain a single sample of decoding accuracy. We repeated the whole 25 
procedure 10 times to obtain statistical comparisons across groups and against shuffled 
distribution.  

For within-time-bin decoding, SVMs were trained using data from one time bin and 
tested using held-out data from the same time bin. For cross-time-bin decoding, SVMs were 
trained using data from one time bin and tested using data from the other time bins. 30 

For statistical comparisons, decoding accuracy during Pre-reward (-4 to -3s) and Post-
reward (0 to 1s) periods was averaged. If the mean decoding accuracy in a group is significantly 
higher than 2 x STD of its respective mean shuffled distribution, we then performed additional 
between-group comparisons (2-way comparison: Mann-Whitney test; 3-way comparison: 
Kruskal-Wallis test followed by Dunn’s multiple comparisons test).  35 

 
Decoding switch vs. stay using HMM states 

In addition to using recorded firing rates during the 4s pre-reward window to decode switch 
vs. stay, we also trained separate decoders using the smoothed activity of the hidden states 
inferred by the HMMs. This approach uniquely allowed us to identify population hidden states 40 
within this time window, and specifically those states that may be intention-selective, which can 
then be artificially manipulated to assess their necessity in decoding. It is important to note that 
the training of the HMM was performed on concatenated trials, which includes the four 1s bins 
pre-reward across all trial types. We then rearranged the sequence of hidden states in each trial 
type a posteriori. 45 

Once the parameters of the HMMs were inferred, the models could smooth the observed 
data by computing the mean observed activity under the posterior distribution of hidden states 
(53). For instance, given the observed activity vector X during a time bin of a trial pre-reward, 
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the HMM inferred a 0.2 probability of being in state S = 1 and a 0.8 probability of staying in 
state S = 2. More precisely, P(S = 1 | X) = 0.2, and P(S = 2 | X) = 0.8. The smoothed 
observations used to train and test the linear decoder were calculated as Y = 0.2μ1 + 0.8μ2, where 
μj represents the inferred mean for the observations in state j. 

To ensure robustness, we randomly sampled 60 neurons from each mouse for 10 neuronal 5 
subsamples. We generated 1000 pseudo trials for each of the four trial types, resulting in a total 
of 4000 pseudo trials for the training and testing sets, separately. The input data to train and test 
the decoder consisted of the smoothed activity assigned to each time bin. We trained and tested a 
support vector machine (SVM) classifier with a linear kernel, similar to the approach used in the 
population decoding using original firing rates, to decode switch vs. stay. In each cross-10 
validation iteration, we randomly selected 100 pseudo trials as the training set and 20 pseudo 
trials as the testing set, for a total of 10 cross-validations. The final decoder accuracy was 
computed as the average across neuronal subsamples and cross-validations. 

To assess the significance of the decoding signal, we compared it to a chance level, defined 
as 2 x standard deviations (STD) around the theoretical mean of the distribution of accuracies 15 
obtained after 1000 shuffles of the labels.  

 
Defining intention-selective states 

We conducted a detailed analysis of the distribution of hidden states across trial types to 
identify intention-selective states. For each mouse, we computed the fraction of occurrence of 20 
each hidden state within the 4s bins pre-reward across all trials. This distribution was then 
normalized to the total number of trials multiplied by the number of bins. We assessed this 
normalized distribution separately for each trial type.  
Consistent with the decoding results, we observed that certain states appeared exclusively in 
either the stay or switch trials, with no occurrences in the other trial types. To quantify the 25 
amount of information each state held for the choice value, we computed the Shannon entropy 
(82). Specifically, for a given state, we normalized its occurrence frequency in each trial type to 
the total number of trials. The entropy of each state for the choice value was calculated using the 
following formula: 

Hstate = - Pswitch x log(Pswitch) + (-Pstay x log(Pstay)) 30 
where Pswitch is the occurrence frequency of the state in switch trials (WS, SW) and Pstay = 1 

- Pswitch. An entropy value of 0 indicates that the state provides highly informative signals for the 
intention. Therefore, we defined an intention-selective state as one with an entropy value of 0 for 
the choice value. 
We examined the distribution of the fraction of intention-selective states at different clustering 35 
thresholds, and selected a threshold for each mouse that yielded the highest number of intention-
selective states.  
To examine the necessity and sufficiency of intention-selective states, we first excluded trials 
that contained intention-selective states in at least 3 time bins pre-reward. In the opposite 
approach, we enhanced the presence of intention-selective states in the decoding procedure by 40 
considering only those trials that included intention states in at least 3 time bins before the 
reward delivery.  

 
Multi-dimensional scaling 

To visualize the geometric structure of the data, we used Multi-Dimensional Scaling (MDS) 45 
transformation to obtain a low-dimensional representation of the data. For pre-task data, we 
started with the N x F matrix used for the Mahalanobis decoder, where N represents the total 
number of subjects across all three groups, and F denotes the number of features employed for 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2023. ; https://doi.org/10.1101/2023.10.23.563652doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.23.563652
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

29 
 

decoding the group identity. Prior to the dimensionality reduction analysis, we normalized each 
group's data by its variance to reduce noise and enhance the clarity of the final visualization. 
Next, we performed a diagonalization of the dissimilarity matrix N x N, which contained the 
Euclidean distances between each pair of subjects in the feature space. We used the same 
procedure for the task period. In these cases, the input matrix was a T x N matrix, where T 5 
represents the total number of pseudo trials, and N denotes the number of neurons. 

 
Inter-regional correlation 

Firing rates (10ms bins) were averaged across all simultaneously recorded neurons in each 
mouse within the same region (BLA and vCA1). Then Pearson’s correlation was computed 10 
across simultaneously recorded regions within each 1s time window. The correlation was 
performed for each trial type separately, and a change in correlation (corrsucrose – corrwater) was 
computed as a measure to assess how different the inter-regional correlation is in sucrose vs. 
water trials for each animal.  

 15 
Statistical analysis 
No statistical tests were used to pre-determine sample size, but the sample sizes used are similar 
to those generally used within the field. Data were analyzed using parametric one- or two-way 
repeated measures (RM) ANOVA, or paired t-test. Where appropriate, ANOVA was followed by 
post hoc pairwise comparisons with corrections for multiple comparisons. If data were 20 
significantly non-normal (with ɑ = 0.05), non-parametric tests were used, including Kruskal-
Wallis test or Mann-Whitney test (between-group comparisons) and Wilcoxon signed-rank test 
(within-group comparisons), and where appropriate, followed by post hoc comparisons with 
corrections for multiple comparisons. Categorical data were assessed using Fisher’s exact test. 
When comparing to chance, data was considered significant if it were outside of 2 x STD of 25 
chance distribution centered around theoretical chance level. Statistical comparisons between 
groups were performed for groups that were significantly different from respective chance 
distribution. All tests were two-sided. Statistical analyses were performed using Graphpad Prism 
V10. 
 30 
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Fig. S1. Decoding of group identity using behavioral features. (A) Schematic of the Mahalanobis decoder trained 
on behavioral features to decode group identity. (B) As further verification that behavioral features between groups 
classified using K-means clustering were different, group identity can be successfully decoded using Mahalanobis 
decoder trained on behavioral features including lick rate discrimination index (DI) during Pre- and Post-reward, 15 
sucrose preference, and social interaction ratio. 
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Fig. S2. Intention selectivity in BLA as a unique susceptibility signature. (A and B) Decoding accuracy of reward 
choice in the current trial in the BLA when the previous trial was (A) water (WS vs. WW) or (B) sucrose (SW vs. SS). 
In resilient mice, upcoming reward choice can be decoded during Pre-reward time window when the previous trial 5 
was water, but not when previous trial was sucrose. In susceptible mice, upcoming reward choice during Pre-reward 
can be decoded regardless of the previous trial choice. (C) Susceptible mice showed fewer consecutive sucrose trials 
(ANOVA, effect of group: F2,57 = 7.60, P = 0.0012), and greater number of consecutive water trials in comparison to 
control and resilient mice (ANOVA, effect of group: F2,57 = 25.09, P < 0.0001). (D) Sucrose and water trials were 
further divided into sucrose/sucrose (SS), water/sucrose (WS), water/water (WW), and sucrose/water (SW) trials after 10 
taking into account the previous trial. Comparison of the proportion of trials in each of the 4 trial types revealed that 
controls showed greater proportion of switch trials (WS, SW). Resilient mice showed greatest proportion of SS trials, 
while susceptible mice showed greatest proportion of WW trials (RM-ANOVA, trial type x group interaction: F6,171 

= 39.99, P < 0.0001). (E and F) Lick rates for each of the 4 trial types during (E) Pre-reward (RM-ANOVA, trial type 
x group interaction: F6,171 = 2.38, P = 0.031) and (F) Post-reward period (RM-ANOVA, trial type x group interaction: 15 
F6,171 = 9.80, P < 0.0001). (G) In vCA1, decoding accuracy of switch vs. stay intention using raw firing rates in 
susceptible and resilient mice was above chance. (H) Schematic of HMM to obtain population hidden states. (I) 
Similarly, in vCA1, decoding accuracy of switch vs. stay intention using inferred firing rates from HMM in the 4s 
preceding reward delivery in susceptible and resilient mice was above chance. (J) MDS visualization of inferred firing 
rates showed that population representations of switch and stay trials can be linearly separated in vCA1 neurons in 20 
susceptible and resilient mice than in controls. (K) Average distribution of the of fraction of intention-states across 
mice at different entropy values. For each mouse, the state entropy was computed at fixed threshold on the clustering 
dendrogram (see methods). Data are mean ± STD. Data are mean ± SEM unless otherwise stated. # Significantly 
different from chance; * P < 0.05, ** P < 0.01. 
 25 
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Fig. S3. Distinct neural signatures of CSDS mice in the absence of task. (A) Number of neurons used in BLA and 
vCA1 in each mouse for analysis. (B) Schematic of dimensionality reduction using principal component analysis 
(PCA). The embedding dimensionality was quantified using participation ratio. (C) There were no statistically 5 
significant differences in cumulative variance explained by principal components (PCs) in BLA and vCA1 between 
groups. Data are mean ± SEM. (D) Mean of the cumulative variance of the first 3 principal components in BLA and 
vCA1. (E) Participation ratio of BLA and vCA1. (F) Akaike information criteria (AIC) from one example mouse in 
each group. HMM with the lowest AIC was selected as the best model. (G) Example raster and HMM states from one 
representative mouse. Colored lines indicate different hidden states and their posterior probability. (H) Two examples 10 
of HMM states correlation matrices for one control and one susceptible mouse, with respective dendrograms of 
agglomerative clustering in vCA1. (I) There was no difference in the proportion of distant hidden states in vCA1 
between groups. (J) The number of clusters across thresholds did not differ between groups in BLA and vCA1. Data 
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are mean ± SEM. (K) The number of clusters of individual mice. (L) Mean of the proportion of clusters in the first 5 
thresholds showed that susceptible mice in BLA had greater proportion of unique hidden states in comparison to 
controls (Kruskal-Wallis, P = 0.0018). No group difference was found in vCA1. (M) Two example heatmaps of 
population activity correlation in BLA over time, showing that population activity patterns were much more correlated 
in the control (top) than the susceptible (bottom) mouse. (N) Average correlation of population activity across time in 5 
the BLA showed a trend towards lower correlated activity in the susceptible mice. (O) In BLA, susceptible mice 
showed reduced firing rates mean (Kruskal-Wallis, P = 0.020) and STD (Kruskal-Wallis, P = 0.0077) in comparison 
to controls. (P) Firing rate (FR), PCA, and HMM features each alone could successfully decode control vs. susceptible 
mice in BLA. (Q) Different time bin sizes were tested and the one that allowed the highest decoding accuracy between 
groups was chosen as the optimal bin size. (R) Group identity could not be decoded using Mahalanobis decoder trained 10 
on neural features in vCA1. The importance of each neural feature in decoding was examined by systematic removal 
of each of the features (subsequent columns). Data are mean ± STD, unless otherwise stated. Chance distributions are 
± 2 x STD around theoretical chance level. # Significantly different from chance; * P < 0.05; ** P < 0.01. 
 
 15 
 

 
 
Fig. S4. Dysfunctional single cell and population-level correlates for reward choice in mice susceptible to 
chronic stress. (A) Cumulative variance of PCs in BLA and vCA1 during Pre-reward and Post-reward periods 20 
revealed no difference between groups. (B) Participation ratio of BLA and vCA1 during Pre-reward and Post-reward 
periods showed no difference between groups. Data are mean ± STD. (C) The proportion and number of HMM clusters 
across different thresholds showed no statistical difference between groups, but BLA neurons in susceptible mice 
showed a trend towards higher proportion of unique clusters. (D) Trial-averaged firing rates of pseudo-populations of 
BLA and vCA1 neurons across groups. (E) Group identity could be decoded better than chance during specific time 25 
windows and trial types. Data are mean ± SEM unless otherwise stated. Chance distributions are ± 2 x STD around 
theoretical chance level. # Significantly different from chance. 
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Fig. S5. Rescue of dysfunctional vCA1-BLA activity and anhedonia by circuit-specific manipulations. (A) 
Number of neurons used in BLA and vCA1 in each mouse during saline and CNO period for analysis. (B) Mean vCA1 
firing rates during pre-task period was increased following CNO (Mann-Whitney, P = 0.008). Data are mean ± STD. 5 
(C) Cumulative variance of PCs did not differ between saline and CNO periods in BLA or vCA1. (D) Mean of the 
cumulative variance of the first 3 PCs in BLA and vCA1. Data are median ± STD. (E) Participation ratio of BLA and 
vCA1. (F) Proportion of HMM clusters across different thresholds in BLA and vCA1. (G) The number of HMM 
clusters across different thresholds in BLA and vCA1. (H) The number of HMM clusters of individual mice across 
different thresholds in BLA and vCA1. Data are mean ± STD. (I) Mean of the proportion of clusters in the first 5 10 
thresholds. Data are mean ± STD. (J) Despite no statistical difference in each of the FR, PCA, and HMM features, the 
decoder trained using all features could successfully decode between saline vs. CNO periods in vCA1 better than 
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chance (± 2 x STD). (K) Firing rates of pseudo-population of BLA and vCA1 neurons during task showed that vCA1 
neurons had elevated firing rates after CNO during both Pre-reward (RM ANOVA, effect of CNO: F1,1092 = 7.60, P = 
0.0060) and Post-reward periods (RM-ANOVA, effect of CNO: F1,1092 = 9.57, P = 0.0020). (L) Removal of trials 
containing intention-selective states (-Intention-selective states) during the saline period reduced decoding accuracy 
of switch vs. stay trials to chance, whereas keeping only trials containing intention-selective states (+Intention-5 
selective states) allowed successful decoding of stay vs. switch trials. Removal of trials with random states had little 
effect on decoding accuracy. Chance distributions are ± 2 x STD around theoretical chance level. (M) MDS 
visualization showed that keeping only intention-selective states allowed the representations of switch trials to be 
linearly distinguished from stay trials, whereas removal of intention-selective states prevents the representations of 
the two trial types from being linearly separated. (N) CNO increased lick rate discrimination index during Post-reward 10 
period in comparison to saline (RM-ANOVA, treatment x time interaction: F1,12 = 10.80, P = 0.0065). (O) CNO 
increased the proportion of SS trials (RM ANOVA with Bonferroni’s multiple comparisons test, trial type x treatment 
interaction: F3,36 = 6.23, P = 0.0016). (P) CNO altered the proportion of stay (water-water and sucrose-sucrose) trials 
(RM ANOVA with Holm-Sidak’s multiple comparisons test, effect of group: F1,12 = 5.61, P = 0.036). (Q) CNO altered 
the proportion of switch (water-sucrose and sucrose-water) trials (RM-ANOVA, effect of group: F1,12 = 5.61, P = 15 
0.036). (R) Mice microinfused with the control virus (AAV-DIO-mCherry) and given CNO showed no change in 
sucrose preference. Data are mean ± SEM unless otherwise stated. # Significantly different from chance; * P < 0.05, 
** P < 0.01. 
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